BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30755333)

  • 1. Regioselective O-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca.
    Sordon S; Popłoński J; Tronina T; Huszcza E
    Bioorg Chem; 2019 Dec; 93():102750. PubMed ID: 30755333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Glycosylation of Daidzein, Genistein and Biochanin A: Two New Glucosides of Biochanin A.
    Sordon S; Popłoński J; Tronina T; Huszcza E
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28054950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of 8-prenylnaringenin by Absidia coerulea and Beauveria bassiana.
    Bartmańska A; Tronina T; Huszcza E
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6451-3. PubMed ID: 22975300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of a major beer prenylflavonoid - isoxanthohumol.
    Bartmańska A; Tronina T; Popłoński J
    Z Naturforsch C J Biosci; 2018 Dec; 74(1-2):1-7. PubMed ID: 30864390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasorelaxant activity of 7-β-O-glycosides biosynthesized from flavonoids.
    Penso J; Cordeiro KC; da Cunha CR; da Silva Castro PF; Martins DR; Lião LM; Rocha ML; de Oliveira V
    Eur J Pharmacol; 2014 Jun; 733():75-80. PubMed ID: 24704375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal Biotransformation of 2'-Methylflavanone and 2'-Methylflavone as a Method to Obtain Glycosylated Derivatives.
    Krawczyk-Łebek A; Dymarska M; Janeczko T; Kostrzewa-Susłow E
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial metabolism part 9. Structure and antioxidant significance of the metabolites of 5,7-dihydroxyflavone (chrysin), and 5- and 6-hydroxyflavones.
    Herath W; Mikell JR; Hale AL; Ferreira D; Khan IA
    Chem Pharm Bull (Tokyo); 2008 Apr; 56(4):418-22. PubMed ID: 18379084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of Methoxyflavones by Selected Entomopathogenic Filamentous Fungi.
    Łużny M; Tronina T; Kozłowska E; Dymarska M; Popłoński J; Łyczko J; Kostrzewa-Susłow E; Janeczko T
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32854359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial biotransformation of bioactive flavonoids.
    Cao H; Chen X; Jassbi AR; Xiao J
    Biotechnol Adv; 2015; 33(1):214-223. PubMed ID: 25447420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of 5,7-Methoxyflavones by Selected Entomopathogenic Filamentous Fungi.
    Łużny M; Tronina T; Kozłowska E; Kostrzewa-Susłow E; Janeczko T
    J Agric Food Chem; 2021 Apr; 69(13):3879-3886. PubMed ID: 33780240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial glycosylation of four free anthraquinones by Absidia coerulea.
    Zhang W; Ye M; Zhan J; Chen Y; Guo D
    Biotechnol Lett; 2004 Jan; 26(2):127-31. PubMed ID: 15000479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Glycosylation of Natural and Synthetic Prenylated Flavonoids on Binding to Human Serum Albumin and Inhibition of Cyclooxygenases COX-1 and COX-2.
    Tronina T; Strugała P; Popłoński J; Włoch A; Sordon S; Bartmańska A; Huszcza E
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28754033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Glycosylated Dihydrochalcones Obtained by Biotransformation of 2'-Hydroxy-2-methylchalcone in Cultures of Entomopathogenic Filamentous Fungi.
    Krawczyk-Łebek A; Dymarska M; Janeczko T; Kostrzewa-Susłow E
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosylation of Methylflavonoids in the Cultures of Entomopathogenic Filamentous Fungi as a Tool for Obtaining New Biologically Active Compounds.
    Krawczyk-Łebek A; Dymarska M; Janeczko T; Kostrzewa-Susłow E
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial transformation of ginsenoside-Rg₁ by Absidia coerulea and the reversal activity of the metabolites towards multi-drug resistant tumor cells.
    Liu X; Qiao L; Xie D; Zhang Y; Zou J; Chen X; Dai J
    Fitoterapia; 2011 Dec; 82(8):1313-7. PubMed ID: 21946057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial metabolism. Part 10: Metabolites of 7,8-dimethoxyflavone and 5-methoxyflavone.
    Herath W; Rakel Mikell J; Ahmad Khan I
    Nat Prod Res; 2009; 23(13):1231-9. PubMed ID: 19731142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4'-O-methylglycosylation of curcumin by Beauveria bassiana.
    Zeng J; Yang N; Li XM; Shami PJ; Zhan J
    Nat Prod Commun; 2010 Jan; 5(1):77-80. PubMed ID: 20184026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regioselective ortho-Hydroxylations of Flavonoids by Yeast.
    Sordon S; Madej A; Popłoński J; Bartmańska A; Tronina T; Brzezowska E; Juszczyk P; Huszcza E
    J Agric Food Chem; 2016 Jul; 64(27):5525-30. PubMed ID: 27324975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Biotransformation of Cannabidiol (CBD) from Cannabis sativa.
    Ahmed SA; Ibrahim AK; Radwan MM; Slade D; Chandra S; Khan IA; ElSohly MA
    Planta Med; 2022 Apr; 88(5):389-397. PubMed ID: 33902128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Antioxidant-Antiproliferative Activity Relationships of Natural C7 and C7-C8 Hydroxylated Flavones and Flavanones.
    Sordon S; Popłoński J; Milczarek M; Stachowicz M; Tronina T; Kucharska AZ; Wietrzyk J; Huszcza E
    Antioxidants (Basel); 2019 Jul; 8(7):. PubMed ID: 31284642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.