These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3075541)

  • 21. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus.
    Christen B; Slack JM
    Dev Biol; 1997 Dec; 192(2):455-66. PubMed ID: 9441681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional CD86 (B7-2/B70) is predominantly expressed on Langerhans cells in atopic dermatitis.
    Ohki O; Yokozeki H; Katayama I; Umeda T; Azuma M; Okumura K; Nishioka K
    Br J Dermatol; 1997 Jun; 136(6):838-45. PubMed ID: 9217814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methods in laboratory investigation. Immunoelectron microscopic methods for demonstration of antigens on normal human melanocytes and other epidermal cells.
    van Duinen SG; Mauw BJ; de Graaff-Reitsma CB; Ruiter DJ
    Lab Invest; 1984 Jun; 50(6):733-41. PubMed ID: 6427521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accumulation of histone H1(0) during early Xenopus laevis development.
    Grunwald D; Lawrence JJ; Khochbin S
    Exp Cell Res; 1995 Jun; 218(2):586-95. PubMed ID: 7796895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of members of the HSP30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos.
    Tam Y; Heikkila JJ
    Dev Genet; 1995; 17(4):331-9. PubMed ID: 8641051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal and spatial expression patterns of FoxN genes in Xenopus laevis embryos.
    Schuff M; Rössner A; Donow C; Knöchel W
    Int J Dev Biol; 2006; 50(4):429-34. PubMed ID: 16525939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo treatment with anti-I-A antibodies: differential effects on Ia antigens and antigen-presenting cell function of spleen cells and epidermal Langerhans cells.
    Aberer W; Kruisbeek AM; Shimada S; Katz SI
    J Immunol; 1986 Feb; 136(3):830-6. PubMed ID: 3455705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xenopus galectin-VIa shows highly specific expression in cement glands and is regulated by canonical Wnt signaling.
    Michiue T; Danno H; Tanibe M; Ikuzawa M; Asashima M
    Gene Expr Patterns; 2007 Oct; 7(8):852-7. PubMed ID: 17706467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role for transforming growth factor-beta1 in maintaining the differentiated state of Langerhans cells in human epidermis.
    Pieri L; Domenici L; Romagnoli P
    Ital J Anat Embryol; 2006; 111(3):133-49. PubMed ID: 17312920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential expression of two cadherins in Xenopus laevis.
    Angres B; Müller AH; Kellermann J; Hausen P
    Development; 1991 Mar; 111(3):829-44. PubMed ID: 1879345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of reactivity to pan-cadherin antibody in epidermal cells as a marker for metamorphic alteration of Xenopus skin.
    Izutsu Y; Tochinai S; Onoé K
    Dev Growth Differ; 2000 Aug; 42(4):377-83. PubMed ID: 10969737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis.
    Jamrich M; Sargent TD; Dawid IB
    Genes Dev; 1987 Apr; 1(2):124-32. PubMed ID: 2445625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fate of ciliated epidermal cells during early development of Xenopus laevis using whole-mount immunostaining with an antibody against chondroitin 6-sulfate proteoglycan and anti-tubulin: transdifferentiation or metaplasia of amphibian epidermis.
    Nishikawa S; Hirata J; Sasaki F
    Histochemistry; 1992 Dec; 98(6):355-8. PubMed ID: 1293075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis.
    Dubaissi E; Rousseau K; Lea R; Soto X; Nardeosingh S; Schweickert A; Amaya E; Thornton DJ; Papalopulu N
    Development; 2014 Apr; 141(7):1514-25. PubMed ID: 24598166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis.
    LaFlamme SE; Dawid IB
    Dev Biol; 1990 Feb; 137(2):414-8. PubMed ID: 1689262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: partial characterization and implication in metamorphosis.
    Izutsu Y; Tochinai S; Maéno M; Iwabuchi K; Onoé K
    Dev Growth Differ; 2002 Dec; 44(6):477-88. PubMed ID: 12492506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective early innervation of a subset of epidermal cells in Xenopus may be mediated by chondroitin sulfate proteoglycans.
    Somasekhar T; Nordlander RH
    Brain Res Dev Brain Res; 1997 Apr; 99(2):208-15. PubMed ID: 9125474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.