BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 30755479)

  • 21. Glucose metabolism after traumatic brain injury: estimation of pyruvate carboxylase and pyruvate dehydrogenase flux by mass isotopomer analysis.
    Bartnik BL; Hovda DA; Lee PW
    J Neurotrauma; 2007 Jan; 24(1):181-94. PubMed ID: 17263682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pyruvate carboxylase-pyruvate dehydrogenase axis in islet pyruvate metabolism: Going round in circles?
    Sugden MC; Holness MJ
    Islets; 2011; 3(6):302-19. PubMed ID: 21934355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of pyruvate dehydrogenase activation by increased cardiac work.
    Kobayashi K; Neely JR
    J Mol Cell Cardiol; 1983 Jun; 15(6):369-82. PubMed ID: 6876186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance.
    Imanaka S; Shigetomi H; Kobayashi H
    Reprod Sci; 2022 Mar; 29(3):653-667. PubMed ID: 33675030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired hippocampal glucose metabolism during and after flurothyl-induced seizures in mice: Reduced phosphorylation coincides with reduced activity of pyruvate dehydrogenase.
    McDonald TS; Borges K
    Epilepsia; 2017 Jul; 58(7):1172-1180. PubMed ID: 28632902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of the pyruvate dehydrogenase complex precedes HIF-1-mediated effects and pyruvate dehydrogenase kinase 1 upregulation during the first hours of hypoxic treatment in hepatocellular carcinoma cells.
    Zimmer AD; Walbrecq G; Kozar I; Behrmann I; Haan C
    Hypoxia (Auckl); 2016; 4():135-145. PubMed ID: 27800515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loss of muscle PDH induces lactic acidosis and adaptive anaplerotic compensation via pyruvate-alanine cycling and glutaminolysis.
    Gopal K; Abdualkader AM; Li X; Greenwell AA; Karwi QG; Altamimi TR; Saed C; Uddin GM; Darwesh AM; Jamieson KL; Kim R; Eaton F; Seubert JM; Lopaschuk GD; Ussher JR; Al Batran R
    J Biol Chem; 2023 Dec; 299(12):105375. PubMed ID: 37865313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymes involved in l-lactate metabolism in humans.
    Adeva M; González-Lucán M; Seco M; Donapetry C
    Mitochondrion; 2013 Nov; 13(6):615-29. PubMed ID: 24029012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of substrate utilization by the mitochondrial pyruvate carrier.
    Vacanti NM; Divakaruni AS; Green CR; Parker SJ; Henry RR; Ciaraldi TP; Murphy AN; Metallo CM
    Mol Cell; 2014 Nov; 56(3):425-435. PubMed ID: 25458843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation.
    Jin Y; Cai Q; Shenoy AK; Lim S; Zhang Y; Charles S; Tarrash M; Fu X; Kamarajugadda S; Trevino JG; Tan M; Lu J
    Oncotarget; 2016 May; 7(18):25113-24. PubMed ID: 26848621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of pyruvate dehydrogenase (PDH) in the hibernating ground squirrel, (Ictidomys tridecemlineatus).
    Wijenayake S; Tessier SN; Storey KB
    J Therm Biol; 2017 Oct; 69():199-205. PubMed ID: 29037383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prolonged hypoxia decreases nuclear pyruvate dehydrogenase complex and regulates the gene expression.
    Eguchi K; Nakayama K
    Biochem Biophys Res Commun; 2019 Nov; 520(1):128-135. PubMed ID: 31582221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.
    Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC
    J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatty acid regulation of glucose metabolism in the intact beating rat heart assessed by carbon-13 NMR spectroscopy: the critical role of pyruvate dehydrogenase.
    Weiss RG; Chacko VP; Gerstenblith G
    J Mol Cell Cardiol; 1989 May; 21(5):469-78. PubMed ID: 2528640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic resonance spectroscopic investigation of mitochondrial fuel metabolism and energetics in cultured human fibroblasts: effects of pyruvate dehydrogenase complex deficiency and dichloroacetate.
    Simpson NE; Han Z; Berendzen KM; Sweeney CA; Oca-Cossio JA; Constantinidis I; Stacpoole PW
    Mol Genet Metab; 2006; 89(1-2):97-105. PubMed ID: 16765624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential effects of safflower oil versus fish oil feeding on insulin-stimulated glycogen synthesis, glycolysis, and pyruvate dehydrogenase flux in skeletal muscle: a 13C nuclear magnetic resonance study.
    Jucker BM; Cline GW; Barucci N; Shulman GI
    Diabetes; 1999 Jan; 48(1):134-40. PubMed ID: 9892234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining the in vivo regulation of cardiac pyruvate dehydrogenase based on label flux from hyperpolarised [1-13C]pyruvate.
    Schroeder MA; Atherton HJ; Heather LC; Griffin JL; Clarke K; Radda GK; Tyler DJ
    NMR Biomed; 2011 Oct; 24(8):980-987. PubMed ID: 21387444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyruvate dehydrogenase kinase 1 controls mitochondrial metabolism and insulin secretion in INS-1 832/13 clonal beta-cells.
    Krus U; Kotova O; Spégel P; Hallgard E; Sharoyko VV; Vedin A; Moritz T; Sugden MC; Koeck T; Mulder H
    Biochem J; 2010 Jul; 429(1):205-13. PubMed ID: 20415663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer.
    Mondal S; Roy D; Camacho-Pereira J; Khurana A; Chini E; Yang L; Baddour J; Stilles K; Padmabandu S; Leung S; Kalloger S; Gilks B; Lowe V; Dierks T; Hammond E; Dredge K; Nagrath D; Shridhar V
    Oncotarget; 2015 Oct; 6(32):33705-19. PubMed ID: 26378042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.