BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 30755483)

  • 1. Methionine oxidation in α-synuclein inhibits its propensity for ordered secondary structure.
    Ponzini E; De Palma A; Cerboni L; Natalello A; Rossi R; Moons R; Konijnenberg A; Narkiewicz J; Legname G; Sobott F; Mauri P; Santambrogio C; Grandori R
    J Biol Chem; 2019 Apr; 294(14):5657-5665. PubMed ID: 30755483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation.
    Leong SL; Pham CL; Galatis D; Fodero-Tavoletti MT; Perez K; Hill AF; Masters CL; Ali FE; Barnham KJ; Cappai R
    Free Radic Biol Med; 2009 May; 46(10):1328-37. PubMed ID: 19248830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein.
    Hokenson MJ; Uversky VN; Goers J; Yamin G; Munishkina LA; Fink AL
    Biochemistry; 2004 Apr; 43(15):4621-33. PubMed ID: 15078109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How oxidized EGCG remodels α-synuclein fibrils into non-toxic aggregates: insights from computational simulations.
    Gonçalves PB; Palhano FL; Cordeiro Y; Sodero ACR
    Phys Chem Chem Phys; 2023 Jul; 25(28):19182-19194. PubMed ID: 37431676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine-mediated oxidation of methionine 127 in α-synuclein causes cytotoxicity and oligomerization of α-synuclein.
    Nakaso K; Tajima N; Ito S; Teraoka M; Yamashita A; Horikoshi Y; Kikuchi D; Mochida S; Nakashima K; Matsura T
    PLoS One; 2013; 8(2):e55068. PubMed ID: 23457458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of dopamine induced alpha-synuclein oligomers.
    Rekas A; Knott RB; Sokolova A; Barnham KJ; Perez KA; Masters CL; Drew SC; Cappai R; Curtain CC; Pham CL
    Eur Biophys J; 2010 Sep; 39(10):1407-19. PubMed ID: 20309679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposite Structural Effects of Epigallocatechin-3-gallate and Dopamine Binding to α-Synuclein.
    Konijnenberg A; Ranica S; Narkiewicz J; Legname G; Grandori R; Sobott F; Natalello A
    Anal Chem; 2016 Sep; 88(17):8468-75. PubMed ID: 27467405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine oxidation, alpha-synuclein and Parkinson's disease.
    Glaser CB; Yamin G; Uversky VN; Fink AL
    Biochim Biophys Acta; 2005 Jan; 1703(2):157-69. PubMed ID: 15680224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Aggregation Conditions Define Whether EGCG is an Inhibitor or Enhancer of
    Sternke-Hoffmann R; Peduzzo A; Bolakhrif N; Haas R; Buell AK
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of Noradrenaline to Native and Intermediate States during the Fibrillation of α-Synuclein Leads to the Formation of Stable and Structured Cytotoxic Species.
    Singh P; Bhat R
    ACS Chem Neurosci; 2019 Jun; 10(6):2741-2755. PubMed ID: 30917654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice.
    Froula JM; Castellana-Cruz M; Anabtawi NM; Camino JD; Chen SW; Thrasher DR; Freire J; Yazdi AA; Fleming S; Dobson CM; Kumita JR; Cremades N; Volpicelli-Daley LA
    J Biol Chem; 2019 Jul; 294(27):10392-10406. PubMed ID: 31142553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu
    Ramis R; Ortega-Castro J; Vilanova B; Adrover M; Frau J
    Int J Biol Macromol; 2021 Feb; 169():251-263. PubMed ID: 33345970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Α-synuclein misfolding and Parkinson's disease.
    Breydo L; Wu JW; Uversky VN
    Biochim Biophys Acta; 2012 Feb; 1822(2):261-85. PubMed ID: 22024360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis.
    Mehra S; Sahay S; Maji SK
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):890-908. PubMed ID: 30853581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro.
    Uversky VN; Yamin G; Souillac PO; Goers J; Glaser CB; Fink AL
    FEBS Lett; 2002 Apr; 517(1-3):239-44. PubMed ID: 12062445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson's Disease.
    Xu Y; Zhang Y; Quan Z; Wong W; Guo J; Zhang R; Yang Q; Dai R; McGeer PL; Qing H
    Neurochem Res; 2016 Oct; 41(10):2788-2796. PubMed ID: 27364962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EGCG has Dual and Opposing Effects on the N-terminal Region of Self-associating α-synuclein Oligomers.
    Grønnemose AL; Østerlund EC; Otzen DE; Jørgensen TJD
    J Mol Biol; 2022 Dec; 434(23):167855. PubMed ID: 36240861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of alpha-synuclein in a pH-dependent manner.
    Pham CL; Leong SL; Ali FE; Kenche VB; Hill AF; Gras SL; Barnham KJ; Cappai R
    J Mol Biol; 2009 Apr; 387(3):771-85. PubMed ID: 19361420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid.
    Conway KA; Harper JD; Lansbury PT
    Biochemistry; 2000 Mar; 39(10):2552-63. PubMed ID: 10704204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation.
    Qin Z; Hu D; Han S; Reaney SH; Di Monte DA; Fink AL
    J Biol Chem; 2007 Feb; 282(8):5862-70. PubMed ID: 17189262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.