These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30755492)

  • 1. Activity-Dependent Remodeling of
    Golovin RM; Vest J; Vita DJ; Broadie K
    J Neurosci; 2019 Apr; 39(16):2995-3012. PubMed ID: 30755492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period.
    Golovin RM; Vest J; Broadie K
    J Neurosci; 2021 Feb; 41(6):1218-1241. PubMed ID: 33402421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experience-Dependent Remodeling of Juvenile Brain Olfactory Sensory Neuron Synaptic Connectivity in an Early-Life Critical Period.
    Nelson N; Miller V; Baumann N; Broadie K
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38497653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent glial pruning of synaptic glomeruli during the critical period.
    Nelson N; Vita DJ; Broadie K
    Sci Rep; 2024 Apr; 14(1):9110. PubMed ID: 38643298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-dependent MAPK/ERK signaling in glia regulates critical period remodeling of synaptic glomeruli.
    Baumann NS; Sears JC; Broadie K
    Cell Signal; 2024 Aug; 120():111224. PubMed ID: 38740233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glia control experience-dependent plasticity in an olfactory critical period.
    Leier HC; Foden AJ; Jindal DA; Wilkov AJ; Costello PVL; Vanderzalm PJ; Coutinho-Budd JC; Tabuchi M; Broihier HT
    bioRxiv; 2024 Oct; ():. PubMed ID: 39005309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish.
    Shao X; Lakhina V; Dang P; Cheng RP; Marcaccio CL; Raper JA
    Neural Dev; 2017 Oct; 12(1):18. PubMed ID: 29020985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae.
    Larkin A; Karak S; Priya R; Das A; Ayyub C; Ito K; Rodrigues V; Ramaswami M
    Learn Mem; 2010 Dec; 17(12):645-53. PubMed ID: 21106688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glomerulus-Selective Regulation of a Critical Period for Interneuron Plasticity in the
    Chodankar A; Sadanandappa MK; VijayRaghavan K; Ramaswami M
    J Neurosci; 2020 Jul; 40(29):5549-5560. PubMed ID: 32532889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral Gene Therapeutic Rescue of an Olfactory Ciliopathy Restores Sensory Input, Axonal Pathfinding, and Odor-Guided Behavior.
    Green WW; Uytingco CR; Ukhanov K; Kolb Z; Moretta J; McIntyre JC; Martens JR
    J Neurosci; 2018 Aug; 38(34):7462-7475. PubMed ID: 30061191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
    Wilson RI; Laurent G
    J Neurosci; 2005 Oct; 25(40):9069-79. PubMed ID: 16207866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent serotonergic signaling in glia regulates targeted synapse elimination.
    Miller VK; Broadie K
    PLoS Biol; 2024 Oct; 22(10):e3002822. PubMed ID: 39352884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs.
    Aimino MA; DePew AT; Restrepo L; Mosca TJ
    J Neurosci; 2023 Jan; 43(1):28-55. PubMed ID: 36446587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragile X Mental Retardation Protein Requirements in Activity-Dependent Critical Period Neural Circuit Refinement.
    Doll CA; Vita DJ; Broadie K
    Curr Biol; 2017 Aug; 27(15):2318-2330.e3. PubMed ID: 28756946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons.
    Rodriguez-Gil DJ; Bartel DL; Jaspers AW; Mobley AS; Imamura F; Greer CA
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5821-6. PubMed ID: 25902488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Stimulus-Dependent Gradient of Cyp26B1+ Olfactory Sensory Neurons Is Necessary for the Functional Integrity of the Olfactory Sensory Map.
    Login H; Håglin S; Berghard A; Bohm S
    J Neurosci; 2015 Oct; 35(40):13807-18. PubMed ID: 26446231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperpolarization-activated cyclic nucleotide-gated channels in olfactory sensory neurons regulate axon extension and glomerular formation.
    Mobley AS; Miller AM; Araneda RC; Maurer LR; Müller F; Greer CA
    J Neurosci; 2010 Dec; 30(49):16498-508. PubMed ID: 21147989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons.
    Dang P; Fisher SA; Stefanik DJ; Kim J; Raper JA
    PLoS Genet; 2018 Jan; 14(1):e1007164. PubMed ID: 29385124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noradrenergic plasticity of olfactory sensory neuron inputs to the main olfactory bulb.
    Eckmeier D; Shea SD
    J Neurosci; 2014 Nov; 34(46):15234-43. PubMed ID: 25392492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Odorant Exposure Increases the Number of Mitral and Tufted Cells Associated with a Single Glomerulus.
    Liu A; Savya S; Urban NN
    J Neurosci; 2016 Nov; 36(46):11646-11653. PubMed ID: 27852773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.