These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30755647)
1. Multilayer fabrication of unobtrusive poly(dimethylsiloxane) nanobrush for tunable cell adhesion. Chae SS; Jung JH; Choi WJ; Park JK; Baik HK; Jung J; Ko HW Sci Rep; 2019 Feb; 9(1):1834. PubMed ID: 30755647 [TBL] [Abstract][Full Text] [Related]
2. Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures. Faid K; Voicu R; Bani-Yaghoub M; Tremblay R; Mealing G; Py C; Barjovanu R Biomed Microdevices; 2005 Sep; 7(3):179-84. PubMed ID: 16133804 [TBL] [Abstract][Full Text] [Related]
3. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104 [TBL] [Abstract][Full Text] [Related]
4. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate). Tu Q; Wang JC; Liu R; He J; Zhang Y; Shen S; Xu J; Liu J; Yuan MS; Wang J Colloids Surf B Biointerfaces; 2013 Feb; 102():361-70. PubMed ID: 23006574 [TBL] [Abstract][Full Text] [Related]
5. Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. Hou S; Yang K; Qin M; Feng XZ; Guan L; Yang Y; Wang C Biosens Bioelectron; 2008 Dec; 24(4):918-22. PubMed ID: 18782664 [TBL] [Abstract][Full Text] [Related]
6. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces. Yu L; Shi Z; Gao L; Li C J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883 [TBL] [Abstract][Full Text] [Related]
7. Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane). Patrito N; McCague C; Norton PR; Petersen NO Langmuir; 2007 Jan; 23(2):715-9. PubMed ID: 17209625 [TBL] [Abstract][Full Text] [Related]
8. Cell and protein compatibility of parylene-C surfaces. Chang TY; Yadav VG; De Leo S; Mohedas A; Rajalingam B; Chen CL; Selvarasah S; Dokmeci MR; Khademhosseini A Langmuir; 2007 Nov; 23(23):11718-25. PubMed ID: 17915896 [TBL] [Abstract][Full Text] [Related]
9. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Zhang Z; Wang J; Tu Q; Nie N; Sha J; Liu W; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Nov; 88(1):85-92. PubMed ID: 21752608 [TBL] [Abstract][Full Text] [Related]
11. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Fu J; Chuah YJ; Ang WT; Zheng N; Wang DA Biomater Sci; 2017 May; 5(6):1156-1173. PubMed ID: 28509913 [TBL] [Abstract][Full Text] [Related]
12. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering. Aufan MR; Sumi Y; Kim S; Lee JY ACS Appl Mater Interfaces; 2015 Oct; 7(42):23454-63. PubMed ID: 26444932 [TBL] [Abstract][Full Text] [Related]
13. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
14. Cellular response to gelatin- and fibronectin-coated multilayer polyelectrolyte nanofilms. Li M; Mills DK; Cui T; Mcshane MJ IEEE Trans Nanobioscience; 2005 Jun; 4(2):170-9. PubMed ID: 16117025 [TBL] [Abstract][Full Text] [Related]
15. Uniform polydimethylsiloxane beads coated with polydopamine and their potential biomedical applications. Jun DR; Moon SK; Choi SW Colloids Surf B Biointerfaces; 2014 Sep; 121():395-9. PubMed ID: 24993068 [TBL] [Abstract][Full Text] [Related]
16. Effect of silicon rubber crosslink density on fibroblast cell behavior in vitro. Mirzadeh H; Shokrolahi F; Daliri M J Biomed Mater Res A; 2003 Dec; 67(3):727-32. PubMed ID: 14613219 [TBL] [Abstract][Full Text] [Related]
17. Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface. Tang L; Min J; Lee EC; Kim JS; Lee NY Biomed Microdevices; 2010 Feb; 12(1):13-21. PubMed ID: 19757071 [TBL] [Abstract][Full Text] [Related]
18. Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Wu Z; Tong W; Jiang W; Liu X; Wang Y; Chen H Colloids Surf B Biointerfaces; 2012 Aug; 96():37-43. PubMed ID: 22510455 [TBL] [Abstract][Full Text] [Related]
19. Responsive microgrooves for the formation of harvestable tissue constructs. Tekin H; Ozaydin-Ince G; Tsinman T; Gleason KK; Langer R; Khademhosseini A; Demirel MC Langmuir; 2011 May; 27(9):5671-9. PubMed ID: 21449596 [TBL] [Abstract][Full Text] [Related]
20. Modulation of Foreign Body Reaction against PDMS Implant by Grafting Topographically Different Poly(acrylic acid) Micropatterns. Lee JS; Shin BH; Yoo BY; Nam SY; Lee M; Choi J; Park H; Choy YB; Heo CY; Koh WG Macromol Biosci; 2019 Dec; 19(12):e1900206. PubMed ID: 31709762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]