These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 30755655)
1. Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Teo ACK; Lee SC; Pollock NL; Stroud Z; Hall S; Thakker A; Pitt AR; Dafforn TR; Spickett CM; Roper DI Sci Rep; 2019 Feb; 9(1):1813. PubMed ID: 30755655 [TBL] [Abstract][Full Text] [Related]
2. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. Hesketh SJ; Klebl DP; Higgins AJ; Thomsen M; Pickles IB; Sobott F; Sivaprasadarao A; Postis VLG; Muench SP Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183192. PubMed ID: 31945320 [TBL] [Abstract][Full Text] [Related]
3. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure. Morrison KA; Akram A; Mathews A; Khan ZA; Patel JH; Zhou C; Hardy DJ; Moore-Kelly C; Patel R; Odiba V; Knowles TJ; Javed MU; Chmel NP; Dafforn TR; Rothnie AJ Biochem J; 2016 Dec; 473(23):4349-4360. PubMed ID: 27694389 [TBL] [Abstract][Full Text] [Related]
4. Regulation of signal peptidase by phospholipids in membrane: characterization of phospholipid bilayer incorporated Escherichia coli signal peptidase. Wang Y; Bruckner R; Stein RL Biochemistry; 2004 Jan; 43(1):265-70. PubMed ID: 14705954 [TBL] [Abstract][Full Text] [Related]
5. Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer. Orekhov PS; Bozdaganyan ME; Voskoboynikova N; Mulkidjanian AY; Steinhoff HJ; Shaitan KV Langmuir; 2019 Mar; 35(10):3748-3758. PubMed ID: 30773011 [TBL] [Abstract][Full Text] [Related]
6. FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks. Mateos-Gil P; Márquez I; López-Navajas P; Jiménez M; Vicente M; Mingorance J; Rivas G; Vélez M Biochim Biophys Acta; 2012 Mar; 1818(3):806-13. PubMed ID: 22198391 [TBL] [Abstract][Full Text] [Related]
7. The Escherichia coli Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties. Keller R; Ariöz C; Hansmeier N; Stenberg-Bruzell F; Burstedt M; Vikström D; Kelly A; Wieslander Å; Daley DO; Hunke S Biochemistry; 2015 Jun; 54(23):3670-6. PubMed ID: 25993101 [TBL] [Abstract][Full Text] [Related]
11. Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Ilgü H; Jeckelmann JM; Gachet MS; Boggavarapu R; Ucurum Z; Gertsch J; Fotiadis D Biophys J; 2014 Apr; 106(8):1660-70. PubMed ID: 24739165 [TBL] [Abstract][Full Text] [Related]
12. A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Swiecicki JM; Santana JT; Imperiali B Cell Chem Biol; 2020 Feb; 27(2):245-251.e3. PubMed ID: 31831268 [TBL] [Abstract][Full Text] [Related]
13. A method for detergent-free isolation of membrane proteins in their local lipid environment. Lee SC; Knowles TJ; Postis VL; Jamshad M; Parslow RA; Lin YP; Goldman A; Sridhar P; Overduin M; Muench SP; Dafforn TR Nat Protoc; 2016 Jul; 11(7):1149-62. PubMed ID: 27254461 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the annular lipid shell of the Sec translocon. Prabudiansyah I; Kusters I; Caforio A; Driessen AJ Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2050-6. PubMed ID: 26129641 [TBL] [Abstract][Full Text] [Related]
15. Detergent-Free Membrane Protein Purification. Rothnie AJ Methods Mol Biol; 2016; 1432():261-7. PubMed ID: 27485341 [TBL] [Abstract][Full Text] [Related]
16. Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions. de Jonge PA; Smit Sibinga DJC; Boright OA; Costa AR; Nobrega FL; Brouns SJJ; Dutilh BE J Virol; 2020 Nov; 94(23):. PubMed ID: 32938760 [TBL] [Abstract][Full Text] [Related]
17. Membrane protein extraction and purification using partially-esterified SMA polymers. Hawkins OP; Jahromi CPT; Gulamhussein AA; Nestorow S; Bahra T; Shelton C; Owusu-Mensah QK; Mohiddin N; O'Rourke H; Ajmal M; Byrnes K; Khan M; Nahar NN; Lim A; Harris C; Healy H; Hasan SW; Ahmed A; Evans L; Vaitsopoulou A; Akram A; Williams C; Binding J; Thandi RK; Joby A; Guest A; Tariq MZ; Rasool F; Cavanagh L; Kang S; Asparuhov B; Jestin A; Dafforn TR; Simms J; Bill RM; Goddard AD; Rothnie AJ Biochim Biophys Acta Biomembr; 2021 Dec; 1863(12):183758. PubMed ID: 34480878 [TBL] [Abstract][Full Text] [Related]
18. Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure. Parmar M; Rawson S; Scarff CA; Goldman A; Dafforn TR; Muench SP; Postis VLG Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):378-383. PubMed ID: 28993151 [TBL] [Abstract][Full Text] [Related]
19. Influence of Poly(styrene- co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs. Hall SCL; Tognoloni C; Price GJ; Klumperman B; Edler KJ; Dafforn TR; Arnold T Biomacromolecules; 2018 Mar; 19(3):761-772. PubMed ID: 29272585 [TBL] [Abstract][Full Text] [Related]
20. Characterizing the structure of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for membrane protein spectroscopic studies. Harding BD; Dixit G; Burridge KM; Sahu ID; Dabney-Smith C; Edelmann RE; Konkolewicz D; Lorigan GA Chem Phys Lipids; 2019 Jan; 218():65-72. PubMed ID: 30528635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]