These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30755688)

  • 1. Integrating experimental and distribution data to predict future species patterns.
    Kotta J; Vanhatalo J; Jänes H; Orav-Kotta H; Rugiu L; Jormalainen V; Bobsien I; Viitasalo M; Virtanen E; Sandman AN; Isaeus M; Leidenberger S; Jonsson PR; Johannesson K
    Sci Rep; 2019 Feb; 9(1):1821. PubMed ID: 30755688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the relative importance of water-borne cues and direct grazing for the induction of defenses in the brown seaweed Fucus vesiculosus.
    Flöthe CR; John U; Molis M
    PLoS One; 2014; 9(10):e109247. PubMed ID: 25279662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping present and future potential distribution patterns for a meso-grazer guild in the Baltic Sea.
    Leidenberger S; De Giovanni R; Kulawik R; Williams AR; Bourlat SJ; Maggs C
    J Biogeogr; 2015 Feb; 42(2):241-254. PubMed ID: 25653464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effects on seaweed-sustaining top-down control vary with season.
    Werner FJ; Graiff A; Matthiessen B
    Oecologia; 2016 Mar; 180(3):889-901. PubMed ID: 26566809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus.
    Rugiu L; Panova M; Pereyra RT; Jormalainen V
    BMC Genomics; 2020 Jan; 21(1):42. PubMed ID: 31931708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.
    Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F
    Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive and negative effects of habitat-forming algae on survival, growth and intra-specific competition of limpets.
    Marzinelli EM; Burrows MT; Jackson AC; Mayer-Pinto M
    PLoS One; 2012; 7(12):e51601. PubMed ID: 23251589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance to climate change of the clonally reproducing endemic Baltic seaweed, Fucus radicans: is phenotypic plasticity enough?
    Rugiu L; Manninen I; Rothäusler E; Jormalainen V
    J Phycol; 2018 Dec; 54(6):888-898. PubMed ID: 30315649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae.
    Martínez B; Arenas F; Trilla A; Viejo RM; Carreño F
    Glob Chang Biol; 2015 Apr; 21(4):1422-33. PubMed ID: 24917488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).
    Raddatz S; Guy-Haim T; Rilov G; Wahl M
    J Phycol; 2017 Feb; 53(1):44-58. PubMed ID: 27711971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting effects of ocean warming on different components of plant-herbivore interactions.
    Pagès JF; Smith TM; Tomas F; Sanmartí N; Boada J; De Bari H; Pérez M; Romero J; Arthur R; Alcoverro T
    Mar Pollut Bull; 2018 Sep; 134():55-65. PubMed ID: 29074253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological responses to variations in grazing and light conditions in native and invasive fucoids.
    Olabarria C; Arenas F; Fernández Á; Troncoso JS; Martínez B
    Mar Environ Res; 2018 Aug; 139():151-161. PubMed ID: 29793731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance and potential for adaptation of a Baltic Sea rockweed under predicted climate change conditions.
    Rugiu L; Manninen I; Rothäusler E; Jormalainen V
    Mar Environ Res; 2018 Mar; 134():76-84. PubMed ID: 29331243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change.
    Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE
    PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community context mediates the top-down vs. bottom-up effects of grazers on rocky shores.
    Bracken ME; Dolecal RE; Long JD
    Ecology; 2014 Jun; 95(6):1458-63. PubMed ID: 25039210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocean acidification decreases grazing pressure but alters morphological structure in a dominant coastal seaweed.
    Kinnby A; White JCB; Toth GB; Pavia H
    PLoS One; 2021; 16(1):e0245017. PubMed ID: 33508019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent responses in growth and nutritional quality of coastal macroalgae to the combination of increased pCO
    Ober GT; Thornber CS
    Mar Environ Res; 2017 Oct; 131():69-79. PubMed ID: 28943069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming.
    Kumagai NH; García Molinos J; Yamano H; Takao S; Fujii M; Yamanaka Y
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8990-8995. PubMed ID: 30126981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental and phenotypic heterogeneity of populations at the trailing range-edge of the habitat-forming macroalga Fucus serratus.
    Duarte L; Viejo RM
    Mar Environ Res; 2018 May; 136():16-26. PubMed ID: 29478764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach.
    Jueterbock A; Smolina I; Coyer JA; Hoarau G
    Ecol Evol; 2016 Mar; 6(6):1712-24. PubMed ID: 27087933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.