These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30758209)

  • 1. Measuring in Situ Length Distributions of Polymer-Wrapped Monochiral Single-Walled Carbon Nanotubes Dispersed in Toluene with Analytical Ultracentrifugation.
    Selvasundaram PB; Kraft R; Li W; Fischer R; Kappes MM; Hennrich F; Krupke R
    Langmuir; 2019 Mar; 35(10):3790-3796. PubMed ID: 30758209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy.
    Si R; Wang K; Chen T; Chen Y
    Anal Chim Acta; 2011 Dec; 708(1-2):28-36. PubMed ID: 22093341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rod hydrodynamics and length distributions of single-wall carbon nanotubes using analytical ultracentrifugation.
    Batista CA; Zheng M; Khripin CY; Tu X; Fagan JA
    Langmuir; 2014 May; 30(17):4895-904. PubMed ID: 24707888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistically accurate length measurements of single-walled carbon nanotubes.
    Ziegler KJ; Rauwald U; Gu Z; Liang F; Billups WE; Hauge RH; Smalley RE
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2917-21. PubMed ID: 17685318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions.
    Giordani S; Bergin SD; Nicolosi V; Lebedkin S; Kappes MM; Blau WJ; Coleman JN
    J Phys Chem B; 2006 Aug; 110(32):15708-18. PubMed ID: 16898715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy.
    Li W; Hennrich F; Flavel BS; Kappes MM; Krupke R
    Nanotechnology; 2016 Sep; 27(37):375706. PubMed ID: 27504810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring single-walled carbon nanotube length distributions from diffusional trajectories.
    Streit JK; Bachilo SM; Naumov AV; Khripin C; Zheng M; Weisman RB
    ACS Nano; 2012 Sep; 6(9):8424-31. PubMed ID: 22924324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size reduction of 3D-polymer-coated single-walled carbon nanotubes by ultracentrifugation.
    Tsutsumi Y; Fujigaya T; Nakashima N
    Nanoscale; 2015 Dec; 7(46):19534-9. PubMed ID: 26538202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation.
    Walter J; Nacken TJ; Damm C; Thajudeen T; Eigler S; Peukert W
    Small; 2015 Feb; 11(7):814-25. PubMed ID: 25201557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic stabilization of multi-walled carbon nanotubes dispersed in nonaqueous media.
    Damasceno JPV; Zarbin AJG
    J Colloid Interface Sci; 2018 Nov; 529():187-196. PubMed ID: 29894937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length distribution of single-walled carbon nanotubes in aqueous suspension measured by electrospray differential mobility analysis.
    Pease LF; Tsai DH; Fagan JA; Bauer BJ; Zangmeister RA; Tarlov MJ; Zachariah MR
    Small; 2009 Dec; 5(24):2894-901. PubMed ID: 19810013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube-based functional materials for optical limiting.
    Chen Y; Lin Y; Liu Y; Doyle J; He N; Zhuang X; Bai J; Blau WJ
    J Nanosci Nanotechnol; 2007; 7(4-5):1268-83. PubMed ID: 17450890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth kinetic of single and double-walled aluminogermanate imogolite-like nanotubes: an experimental and modeling approach.
    Maillet P; Levard C; Spalla O; Masion A; Rose J; Thill A
    Phys Chem Chem Phys; 2011 Feb; 13(7):2682-9. PubMed ID: 21152518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers.
    Deria P; Von Bargen CD; Olivier JH; Kumbhar AS; Saven JG; Therien MJ
    J Am Chem Soc; 2013 Oct; 135(43):16220-34. PubMed ID: 24070370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the Diameter of Single-Wall Carbon Nanotubes Using AFM.
    Vobornik D; Chen M; Zou S; Lopinski GP
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.
    Rouhi S; Alizadeh Y; Ansari R
    J Mol Model; 2016 Jan; 22(1):41. PubMed ID: 26791535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes.
    Hwang JY; Nish A; Doig J; Douven S; Chen CW; Chen LC; Nicholas RJ
    J Am Chem Soc; 2008 Mar; 130(11):3543-53. PubMed ID: 18293976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidimensional analysis of nanoparticles with highly disperse properties using multiwavelength analytical ultracentrifugation.
    Walter J; Löhr K; Karabudak E; Reis W; Mikhael J; Peukert W; Wohlleben W; Cölfen H
    ACS Nano; 2014 Sep; 8(9):8871-86. PubMed ID: 25130765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.