These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30758287)

  • 1. Architectural principles for Hfq/Crc-mediated regulation of gene expression.
    Pei XY; Dendooven T; Sonnleitner E; Chen S; Bläsi U; Luisi BF
    Elife; 2019 Feb; 8():. PubMed ID: 30758287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa.
    Sonnleitner E; Wulf A; Campagne S; Pei XY; Wolfinger MT; Forlani G; Prindl K; Abdou L; Resch A; Allain FH; Luisi BF; Urlaub H; Bläsi U
    Nucleic Acids Res; 2018 Feb; 46(3):1470-1485. PubMed ID: 29244160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation.
    Sonnleitner E; Prindl K; Bläsi U
    PLoS One; 2017; 12(7):e0180887. PubMed ID: 28686727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of Hfq-mediated translational repression by the co-repressor Crc in Pseudomonas aeruginosa.
    Malecka EM; Bassani F; Dendooven T; Sonnleitner E; Rozner M; Albanese TG; Resch A; Luisi B; Woodson S; Bläsi U
    Nucleic Acids Res; 2021 Jul; 49(12):7075-7087. PubMed ID: 34139006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression.
    Sonnleitner E; Bläsi U
    PLoS Genet; 2014 Jun; 10(6):e1004440. PubMed ID: 24945892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.
    Moreno R; Hernández-Arranz S; La Rosa R; Yuste L; Madhushani A; Shingler V; Rojo F
    Environ Microbiol; 2015 Jan; 17(1):105-18. PubMed ID: 24803210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes.
    Krepl M; Dendooven T; Luisi BF; Sponer J
    J Biol Chem; 2021; 296():100656. PubMed ID: 33857481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli.
    Lu C; Ramalho TP; Bisschops MMM; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    N Biotechnol; 2023 Nov; 77():20-29. PubMed ID: 37348756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pervasive Targeting of Nascent Transcripts by Hfq.
    Kambara TK; Ramsey KM; Dove SL
    Cell Rep; 2018 May; 23(5):1543-1552. PubMed ID: 29719264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Hfq-Crc target sites are required to impose catabolite repression on (methyl)phenol metabolism in Pseudomonas putida CF600.
    Wirebrand L; Madhushani AWK; Irie Y; Shingler V
    Environ Microbiol; 2018 Jan; 20(1):186-199. PubMed ID: 29076626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifaceted Interplay between Hfq and the Small RNA GssA in
    Santoro S; Paganin C; Gilardi S; Brignoli T; Bertoni G; Ferrara S
    mBio; 2023 Feb; 14(1):e0241822. PubMed ID: 36475775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational regulation by Hfq-Crc assemblies emerges from polymorphic ribonucleoprotein folding.
    Dendooven T; Sonnleitner E; Bläsi U; Luisi BF
    EMBO J; 2023 Feb; 42(3):e111129. PubMed ID: 36504222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pseudomonas aeruginosa PrrF1 and PrrF2 Small Regulatory RNAs Promote 2-Alkyl-4-Quinolone Production through Redundant Regulation of the
    Djapgne L; Panja S; Brewer LK; Gans JH; Kane MA; Woodson SA; Oglesby-Sherrouse AG
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507088
    [No Abstract]   [Full Text] [Related]  

  • 14. Translational autocontrol of the Escherichia coli hfq RNA chaperone gene.
    Vecerek B; Moll I; Bläsi U
    RNA; 2005 Jun; 11(6):976-84. PubMed ID: 15872186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity.
    Milojevic T; Grishkovskaya I; Sonnleitner E; Djinovic-Carugo K; Bläsi U
    PLoS One; 2013; 8(5):e64609. PubMed ID: 23717639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas.
    Bharwad K; Rajkumar S
    World J Microbiol Biotechnol; 2019 Aug; 35(9):140. PubMed ID: 31451938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating tastes: physiological contributions of the Hfq-binding small RNA Spot 42 to catabolite repression.
    Beisel CL; Storz G
    RNA Biol; 2011; 8(5):766-70. PubMed ID: 21788732
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Gil-Gil T; Valverde JR; Martínez JL; Corona F
    Microbiol Spectr; 2023 Dec; 11(6):e0235023. PubMed ID: 37902380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of Escherichia coli Hfq mutations on RNA binding and sRNA•mRNA duplex formation in rpoS riboregulation.
    Updegrove TB; Wartell RM
    Biochim Biophys Acta; 2011 Oct; 1809(10):532-40. PubMed ID: 21889623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminally truncated derivatives of Escherichia coli Hfq are proficient in riboregulation.
    Olsen AS; Møller-Jensen J; Brennan RG; Valentin-Hansen P
    J Mol Biol; 2010 Nov; 404(2):173-82. PubMed ID: 20888338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.