BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30758750)

  • 1. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol.
    Xin Z; Ge L; Chen S; Sun X
    J Plant Res; 2019 Mar; 132(2):285-293. PubMed ID: 30758750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Jasmonic Acid Pathway Positively Regulates the Polyphenol Oxidase-Based Defense against Tea Geometrid Caterpillars in the Tea Plant (Camellia sinensis).
    Zhang J; Zhang X; Ye M; Li XW; Lin SB; Sun XL
    J Chem Ecol; 2020 Mar; 46(3):308-316. PubMed ID: 32016775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants.
    Yang ZW; Duan XN; Jin S; Li XW; Chen ZM; Ren BZ; Sun XL
    J Chem Ecol; 2013 Jun; 39(6):744-51. PubMed ID: 23702702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants.
    Jing T; Du W; Gao T; Wu Y; Zhang N; Zhao M; Jin J; Wang J; Schwab W; Wan X; Song C
    Plant Cell Environ; 2021 Apr; 44(4):1178-1191. PubMed ID: 32713005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis, is involved in wound and herbivore infestation responses.
    Xin Z; Zhang J; Ge L; Lei S; Han J; Zhang X; Li X; Sun X
    Gene; 2017 Jun; 615():18-24. PubMed ID: 28322995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indirect defense against the tea geometrid Ectropis obliqua.
    Xin Z; Zhang Z; Chen Z; Sun X
    J Plant Res; 2014 Jul; 127(4):565-72. PubMed ID: 24888389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of a herbivore-induced acyl-CoA oxidase gene, CsACX1, in the synthesis of jasmonic acid and its expression in flower opening in tea plant (Camellia sinensis).
    Xin Z; Chen S; Ge L; Li X; Sun X
    Plant Physiol Biochem; 2019 Feb; 135():132-140. PubMed ID: 30529979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wound- and pathogen-activated de novo JA synthesis using different ACX isozymes in tea plant (Camellia sinensis).
    Chen S; Lu X; Ge L; Sun X; Xin Z
    J Plant Physiol; 2019 Dec; 243():153047. PubMed ID: 31639538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herbivore-induced volatiles influence moth preference by increasing the β-Ocimene emission of neighbouring tea plants.
    Jing T; Qian X; Du W; Gao T; Li D; Guo D; He F; Yu G; Li S; Schwab W; Wan X; Sun X; Song C
    Plant Cell Environ; 2021 Nov; 44(11):3667-3680. PubMed ID: 34449086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis.
    Wang WW; Zheng C; Hao WJ; Ma CL; Ma JQ; Ni DJ; Chen L
    PLoS One; 2018; 13(8):e0201670. PubMed ID: 30067831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herbivore-Induced (
    Liao Y; Tan H; Jian G; Zhou X; Huo L; Jia Y; Zeng L; Yang Z
    J Agric Food Chem; 2021 Nov; 69(43):12608-12620. PubMed ID: 34677960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and Phytochemical Analyses Reveal Root-Mediated Resource-Based Defense Response to Leaf Herbivory by Ectropis oblique in Tea Plant ( Camellia sinensis).
    Yang H; Wang Y; Li L; Li F; He Y; Wu J; Wei C
    J Agric Food Chem; 2019 May; 67(19):5465-5476. PubMed ID: 30916943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths.
    Sun XL; Wang GC; Gao Y; Zhang XZ; Xin ZJ; Chen ZM
    J Chem Ecol; 2014 Oct; 40(10):1080-9. PubMed ID: 25378120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq.
    Wang YN; Tang L; Hou Y; Wang P; Yang H; Wei CL
    Funct Integr Genomics; 2016 Jul; 16(4):383-98. PubMed ID: 27098524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of local and systemic amino acids metabolism for the inducible defense in tea plant (Camellia sinensis) in response to leaf herbivory by Ectropis oblique.
    Li L; Li T; Jiang Y; Yang Y; Zhang L; Jiang Z; Wei C; Wan X; Yang H
    Arch Biochem Biophys; 2020 Apr; 683():108301. PubMed ID: 32057759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JA-Ile-macrolactone 5b Induces Tea Plant (
    Lin S; Dong Y; Li X; Xing Y; Liu M; Sun X
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Chloroplast Defects on Formation of Jasmonic Acid and Characteristic Aroma Compounds in Tea (
    Li J; Zeng L; Liao Y; Gu D; Tang J; Yang Z
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30818885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two New Polyphenol Oxidase Genes of Tea Plant (
    Huang C; Zhang J; Zhang X; Yu Y; Bian W; Zeng Z; Sun X; Li X
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30115844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense.
    Sugimoto K; Matsui K; Iijima Y; Akakabe Y; Muramoto S; Ozawa R; Uefune M; Sasaki R; Alamgir KM; Akitake S; Nobuke T; Galis I; Aoki K; Shibata D; Takabayashi J
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7144-9. PubMed ID: 24778218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indole primes defence signalling and increases herbivore resistance in tea plants.
    Ye M; Liu M; Erb M; Glauser G; Zhang J; Li X; Sun X
    Plant Cell Environ; 2021 Apr; 44(4):1165-1177. PubMed ID: 32996129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.