These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
13. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data. McCalla SG; Fotuhi Siahpirani A; Li J; Pyne S; Stone M; Periyasamy V; Shin J; Roy S G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36626328 [TBL] [Abstract][Full Text] [Related]
15. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. Chen S; Mar JC BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350 [TBL] [Abstract][Full Text] [Related]
16. PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data. Song D; Li JJ Genome Biol; 2021 Apr; 22(1):124. PubMed ID: 33926517 [TBL] [Abstract][Full Text] [Related]
17. Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data. Mao G; Pang Z; Zuo K; Liu J J Comput Biol; 2023 May; 30(5):619-631. PubMed ID: 36877552 [TBL] [Abstract][Full Text] [Related]
18. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984 [TBL] [Abstract][Full Text] [Related]
19. Inference of Gene Coexpression Networks from Bulk-Based RNA-Sequencing Data. Lamere AT Methods Mol Biol; 2021; 2328():13-23. PubMed ID: 34251617 [TBL] [Abstract][Full Text] [Related]
20. Computational approaches for interpreting scRNA-seq data. Rostom R; Svensson V; Teichmann SA; Kar G FEBS Lett; 2017 Aug; 591(15):2213-2225. PubMed ID: 28524227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]