These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30758941)

  • 1. Chiral Polyaniline Hollow Nanotwists toward Efficient Enantioselective Separation of Amino Acids.
    Zhou C; Ren Y; Han J; Xu Q; Guo R
    ACS Nano; 2019 Mar; 13(3):3534-3544. PubMed ID: 30758941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Supramolecular Chiral Twisted Nanoribbons from Achiral Conjugated Oligoaniline Derivatives.
    Zhou C; Ren Y; Han J; Gong X; Wei Z; Xie J; Guo R
    J Am Chem Soc; 2018 Aug; 140(30):9417-9425. PubMed ID: 29923713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic superhelical conducting microfibers with homochirality for enantioselective sensing.
    Zou W; Yan Y; Fang J; Yang Y; Liang J; Deng K; Yao J; Wei Z
    J Am Chem Soc; 2014 Jan; 136(2):578-81. PubMed ID: 24370236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Polyaniline-Metal Ion as Chiral Nanozymes for Enantioselective Catalysis.
    Yuan G; Wang C; Xi Z; Li S; Sun X; Hang P; Liu X; Han J; Guo R
    Small; 2023 Nov; 19(47):e2303739. PubMed ID: 37507827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons.
    Zhong W; Wang Y; Yan Y; Sun Y; Deng J; Yang W
    J Phys Chem B; 2007 Apr; 111(15):3918-26. PubMed ID: 17388624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes.
    Chen X; Chen G; Ma Y; Li X; Jiang L; Wang F
    J Nanosci Nanotechnol; 2006 Mar; 6(3):783-6. PubMed ID: 16573137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels.
    Cho MS; Choi HJ; Ahn WS
    Langmuir; 2004 Jan; 20(1):202-7. PubMed ID: 15745021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyaniline nanorods and hollow-microspheres prepared by using copper wires or rings as template.
    Gao Y; Wang F; Gong J; Su Z; Qu L
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5972-6. PubMed ID: 19198334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold-polyaniline composite. Part I. Moving electrochemical interface.
    Anthony Smith J; Josowicz M; Janata J
    Phys Chem Chem Phys; 2005 Oct; 7(20):3614-8. PubMed ID: 16294240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot surfactantless route to polyaniline hollow nanospheres with incontinuous multicavities and application for the removal of lead ions from water.
    Han J; Fang P; Dai J; Guo R
    Langmuir; 2012 Apr; 28(15):6468-75. PubMed ID: 22443717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical enantioselective sensor for effective recognition of tryptophan isomers based on chiral polyaniline twisted nanoribbon.
    He S; Shang X; Lu W; Tian Y; Xu Z; Zhang W
    Anal Chim Acta; 2021 Feb; 1147():155-164. PubMed ID: 33485574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled 3D Helical Hollow Superstructures with Enhanced Microwave Absorption Properties.
    Yang Y; Zhang J; Zou W; Wu S; Wu F; Xie A; Wei Z
    Macromol Rapid Commun; 2018 Feb; 39(3):. PubMed ID: 29152914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyaniline/layered zirconium phosphate nanocomposites: secondary-like doped polyaniline obtained by the layer-by-layer technique.
    Izumi CM; Constantino VR; Temperini ML
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1782-9. PubMed ID: 18572578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of chiral nanostructures by self-assembly of designed amphiphilic peptides and silica biomineralization.
    Huang Z; Yao Y; Han L; Che S
    Chemistry; 2014 Dec; 20(51):17068-76. PubMed ID: 25323634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics.
    Park HW; Kim T; Huh J; Kang M; Lee JE; Yoon H
    ACS Nano; 2012 Sep; 6(9):7624-33. PubMed ID: 22900544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomer-assisted synthesis of chiral polyaniline nanofibers.
    Li W; Wang HL
    J Am Chem Soc; 2004 Mar; 126(8):2278-9. PubMed ID: 14982411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly enantioselective four-component reaction for the efficient construction of chiral β-hydroxy-α-amino acid derivatives.
    Qian Y; Jing C; Liu S; Hu W
    Chem Commun (Camb); 2013 Apr; 49(26):2700-2. PubMed ID: 23435435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of "hairy urchin"-like polyaniline by using β-cyclodextrin as a template.
    Prasannan A; Truong Tle B; Hong PD; Somanathan N; Shown I; Imae T
    Langmuir; 2011 Jan; 27(2):766-73. PubMed ID: 21155549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.