These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30758961)
1. A 5 + 1 Protic Acid Assisted Aza-Pummerer Approach for Synthesis of 4-Chloropiperidines from Homoallylic Amines. Ebule R; Mudshinge S; Nantz MH; Mashuta MS; Hammond GB; Xu B J Org Chem; 2019 Mar; 84(6):3249-3259. PubMed ID: 30758961 [TBL] [Abstract][Full Text] [Related]
2. HCl•DMPU-Assisted One-pot and Metal-free Conversion of Aldehydes to Nitriles. Mudshinge SR; Potnis CS; Xu B; Hammond GB Green Chem; 2020 Jul; 22(13):4161-4164. PubMed ID: 33795972 [TBL] [Abstract][Full Text] [Related]
3. Palladium-catalyzed, one-pot, three-component synthesis of homoallylic amines from aldehydes, anisidine, and allyl trifluoroacetate. Grote RE; Jarvo ER Org Lett; 2009 Jan; 11(2):485-8. PubMed ID: 19093851 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of methyl carbamates from primary aliphatic amines and dimethyl carbonate in supercritical CO2: effects of pressure and cosolvents and chemoselectivity. Selva M; Tundo P; Perosa A; Dall'Acqua F J Org Chem; 2005 Apr; 70(7):2771-7. PubMed ID: 15787571 [TBL] [Abstract][Full Text] [Related]
5. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions. Bosica G; Abdilla R Molecules; 2016 Jun; 21(6):. PubMed ID: 27338336 [TBL] [Abstract][Full Text] [Related]
6. Citrus Juice: Green and Natural Catalyst for the Solvent-free Silica Supported Synthesis of β-Enaminones Using Grindstone Technique. Marvi O; Fekri LZ Comb Chem High Throughput Screen; 2018; 21(1):19-25. PubMed ID: 29295688 [TBL] [Abstract][Full Text] [Related]
7. An efficient synthesis of 2-amino alcohols by silica gel catalysed opening of epoxide rings by amines. Chakraborti AK; Rudrawar S; Kondaskar A Org Biomol Chem; 2004 May; 2(9):1277-80. PubMed ID: 15105916 [TBL] [Abstract][Full Text] [Related]
8. Solvent-promoted and -controlled aza-Michael reaction with aromatic amines. De K; Legros J; Crousse B; Bonnet-Delpon D J Org Chem; 2009 Aug; 74(16):6260-5. PubMed ID: 19621888 [TBL] [Abstract][Full Text] [Related]
9. Enantioselective transfer aminoallylation: synthesis of optically active homoallylic primary amines. Sugiura M; Mori C; Kobayashi S J Am Chem Soc; 2006 Aug; 128(34):11038-9. PubMed ID: 16925417 [TBL] [Abstract][Full Text] [Related]
10. Preparation of homoallylic amines via a three-component coupling process. Ou X; Labes R; Battilocchio C; Ley SV Org Biomol Chem; 2018 Sep; 16(36):6652-6654. PubMed ID: 30183047 [TBL] [Abstract][Full Text] [Related]
11. The Electrogenerated Cyanomethyl Anion: An Old Base Still Smart. Chiarotto I; Mattiello L; Feroci M Acc Chem Res; 2019 Dec; 52(12):3297-3308. PubMed ID: 31714056 [TBL] [Abstract][Full Text] [Related]
12. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines. Zhang G; Gao B; Huang H Angew Chem Int Ed Engl; 2015 Jun; 54(26):7657-61. PubMed ID: 25959632 [TBL] [Abstract][Full Text] [Related]
13. Cyanoacetic Acid as a Masked Electrophile: Transition-Metal-Free Cyanomethylation of Amines and Carboxylic Acids. Wang H; Shao Y; Zheng H; Wang H; Cheng J; Wan X Chemistry; 2015 Dec; 21(50):18333-7. PubMed ID: 26511114 [TBL] [Abstract][Full Text] [Related]
14. Efficient access to unprotected primary amines by iron-catalyzed aminochlorination of alkenes. Legnani L; Prina-Cerai G; Delcaillau T; Willems S; Morandi B Science; 2018 Oct; 362(6413):434-439. PubMed ID: 30361368 [TBL] [Abstract][Full Text] [Related]
15. The Aryne [2,3] Stevens Rearrangement. Roy T; Thangaraj M; Kaicharla T; Kamath RV; Gonnade RG; Biju AT Org Lett; 2016 Oct; 18(20):5428-5431. PubMed ID: 27736088 [TBL] [Abstract][Full Text] [Related]
16. Highly efficient asymmetric construction of quaternary carbon-containing homoallylic and homopropargylic amines. Guo T; Song R; Yuan BH; Chen XY; Sun XW; Lin GQ Chem Commun (Camb); 2013 Jun; 49(47):5402-4. PubMed ID: 23657470 [TBL] [Abstract][Full Text] [Related]
17. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Ikawa T; Fujita Y; Mizusaki T; Betsuin S; Takamatsu H; Maegawa T; Monguchi Y; Sajiki H Org Biomol Chem; 2012 Jan; 10(2):293-304. PubMed ID: 22068239 [TBL] [Abstract][Full Text] [Related]
18. Reaction behaviour of arylamines with nitroalkenes in the presence of bismuth(iii) triflate: an easy access to 2,3-dialkylquinolines. Ali S; Gattu R; Singh V; Mondal S; Khan AT; Dubey G; Bharatam PV Org Biomol Chem; 2020 Mar; 18(9):1785-1793. PubMed ID: 32073090 [TBL] [Abstract][Full Text] [Related]
19. Interruption of Formal Schmidt Rearrangement/Hosomi-Sakurai Reaction of Vinyl Azides with Allyl/Propargylsilanes. Fang G; Liu Z; Cao S; Yuan H; Zhang J; Pan L Org Lett; 2018 Nov; 20(22):7113-7116. PubMed ID: 30387360 [TBL] [Abstract][Full Text] [Related]
20. [Scope and limitations of the analytical use of dansyl chloride, I: The reaction of aromatic sulfonyl chlorides with aliphatic tertiary amines: the microanalytical aspects of the Hinsberg test (author's transl)]. Wiechmann M Hoppe Seylers Z Physiol Chem; 1977 Aug; 358(8):967-80. PubMed ID: 924381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]