BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30759191)

  • 1. Identification of caveolin-1 domain signatures via machine learning and graphlet analysis of single-molecule super-resolution data.
    Khater IM; Meng F; Nabi IR; Hamarneh G
    Bioinformatics; 2019 Sep; 35(18):3468-3475. PubMed ID: 30759191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super Resolution Network Analysis Defines the Molecular Architecture of Caveolae and Caveolin-1 Scaffolds.
    Khater IM; Meng F; Wong TH; Nabi IR; Hamarneh G
    Sci Rep; 2018 Jun; 8(1):9009. PubMed ID: 29899348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caveolae and scaffold detection from single molecule localization microscopy data using deep learning.
    Khater IM; Aroca-Ouellette ST; Meng F; Nabi IR; Hamarneh G
    PLoS One; 2019; 14(8):e0211659. PubMed ID: 31449531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution modularity analysis shows polyhedral caveolin-1 oligomers combine to form scaffolds and caveolae.
    Khater IM; Liu Q; Chou KC; Hamarneh G; Nabi IR
    Sci Rep; 2019 Jul; 9(1):9888. PubMed ID: 31285524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single molecule network analysis identifies structural changes to caveolae and scaffolds due to mutation of the caveolin-1 scaffolding domain.
    Wong TH; Khater IM; Joshi B; Shahsavari M; Hamarneh G; Nabi IR
    Sci Rep; 2021 Apr; 11(1):7810. PubMed ID: 33833286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galectin-3 Overrides PTRF/Cavin-1 Reduction of PC3 Prostate Cancer Cell Migration.
    Meng F; Joshi B; Nabi IR
    PLoS One; 2015; 10(5):e0126056. PubMed ID: 25942420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9.
    Aung CS; Hill MM; Bastiani M; Parton RG; Parat MO
    Eur J Cell Biol; 2011; 90(2-3):136-42. PubMed ID: 20732728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease.
    Enyong EN; Gurley JM; De Ieso ML; Stamer WD; Elliott MH
    Prog Retin Eye Res; 2022 Nov; 91():101094. PubMed ID: 35729002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression.
    Gould ML; Williams G; Nicholson HD
    Prostate; 2010 Nov; 70(15):1609-21. PubMed ID: 20564315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function.
    Hill MM; Bastiani M; Luetterforst R; Kirkham M; Kirkham A; Nixon SJ; Walser P; Abankwa D; Oorschot VM; Martin S; Hancock JF; Parton RG
    Cell; 2008 Jan; 132(1):113-24. PubMed ID: 18191225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of PTRF in PC-3 Cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways.
    Inder KL; Zheng YZ; Davis MJ; Moon H; Loo D; Nguyen H; Clements JA; Parton RG; Foster LJ; Hill MM
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.012245. PubMed ID: 22030351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential impact of caveolae and caveolin-1 scaffolds on the membrane raft proteome.
    Zheng YZ; Boscher C; Inder KL; Fairbank M; Loo D; Hill MM; Nabi IR; Foster LJ
    Mol Cell Proteomics; 2011 Oct; 10(10):M110.007146. PubMed ID: 21753190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UBE2O ubiquitinates PTRF/CAVIN1 and inhibits the secretion of exosome-related PTRF/CAVIN1.
    Cen X; Chen Q; Wang B; Xu H; Wang X; Ling Y; Zhang X; Qin D
    Cell Commun Signal; 2022 Nov; 20(1):191. PubMed ID: 36443833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer.
    Nassar ZD; Hill MM; Parton RG; Parat MO
    Nat Rev Urol; 2013 Sep; 10(9):529-36. PubMed ID: 23938946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae.
    Mohan J; Morén B; Larsson E; Holst MR; Lundmark R
    J Cell Sci; 2015 Mar; 128(5):979-91. PubMed ID: 25588833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution analysis of PACSIN2 and EHD2 at caveolae.
    Nishimura T; Suetsugu S
    PLoS One; 2022; 17(7):e0271003. PubMed ID: 35834519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes.
    Hayer A; Stoeber M; Bissig C; Helenius A
    Traffic; 2010 Mar; 11(3):361-82. PubMed ID: 20070607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs.
    Stoeber M; Schellenberger P; Siebert CA; Leyrat C; Helenius A; Grünewald K
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8069-E8078. PubMed ID: 27834731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis.
    Nassar ZD; Moon H; Duong T; Neo L; Hill MM; Francois M; Parton RG; Parat MO
    Oncotarget; 2013 Oct; 4(10):1844-55. PubMed ID: 24123650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation.
    Tillu VA; Kovtun O; McMahon KA; Collins BM; Parton RG
    Mol Biol Cell; 2015 Oct; 26(20):3561-9. PubMed ID: 26269585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.