BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30759455)

  • 1. Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery.
    Hildebrandt T; Brüning JJ; Lamecker H; Zachow S; Heppt WJ; Schmidt N; Goubergrits L
    Facial Plast Surg; 2019 Feb; 35(1):3-8. PubMed ID: 30759455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the intranasal flow field through computational fluid dynamics.
    Hildebrandt T; Goubergrits L; Heppt WJ; Bessler S; Zachow S
    Facial Plast Surg; 2013 Apr; 29(2):93-8. PubMed ID: 23564240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Model of nasal cavity and paranasal sinuses created for studying the dynamics of the nasal airflow].
    Jiang GL; Xu G
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2008 Sep; 43(9):665-9. PubMed ID: 19035259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Nasal Valve Shape on Downstream Volume, Airflow, and Pressure Drop: Importance of the Nasal Valve Revisited.
    Naughton JP; Lee AY; Ramos E; Wootton D; Stupak HD
    Ann Otol Rhinol Laryngol; 2018 Nov; 127(11):745-753. PubMed ID: 30191730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study.
    Alam S; Li C; Bradburn KH; Zhao K; Lee TS
    Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.
    Keeler JA; Patki A; Woodard CR; Frank-Ito DO
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):153-66. PubMed ID: 26270330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method.
    Tretiakow D; Tesch K; Meyer-Szary J; Markiet K; Skorek A
    Eur Arch Otorhinolaryngol; 2021 May; 278(5):1443-1453. PubMed ID: 33068172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Am J Rhinol Allergy; 2011; 25(6):388-92. PubMed ID: 22185741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis.
    Wang T; Chen D; Wang PH; Chen J; Deng J
    Braz J Med Biol Res; 2016 Aug; 49(9):e5182. PubMed ID: 27533764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.
    Zhao K; Malhotra P; Rosen D; Dalton P; Pribitkin EA
    Anat Rec (Hoboken); 2014 Nov; 297(11):2187-95. PubMed ID: 25312372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A computational fluid dynamics study of inner flow through nasal cavity with unilateral hypertrophic inferior turbinate].
    Guo Y; Zhang Y; Chen G; Liu S; Lu X; Zhu M; Cai C; Chen X
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Sep; 23(17):773-7. PubMed ID: 20030039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of nasal irrigation flow from a squeeze bottle using computational fluid dynamics.
    Inthavong K; Shang Y; Wong E; Singh N
    Int Forum Allergy Rhinol; 2020 Jan; 10(1):29-40. PubMed ID: 31691535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between nasal airflow characteristics and clinical relevance of nasal septal deviation to nasal airway obstruction.
    Kim SK; Heo GE; Seo A; Na Y; Chung SK
    Respir Physiol Neurobiol; 2014 Feb; 192():95-101. PubMed ID: 24361464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of endoscopic sinus surgery on airflow of the nasal cavity and paranasal sinuses: a computational fluid dynamics study.].
    Xiong GX; Li JF; Jiang GL; Zhan JM; Rong LW; Xu G
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Nov; 44(11):911-7. PubMed ID: 20079072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.
    Wakayama T; Suzuki M; Tanuma T
    PLoS One; 2016; 11(3):e0150951. PubMed ID: 26943335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New CFD tools to evaluate nasal airflow.
    Burgos MA; Sanmiguel-Rojas E; Del Pino C; Sevilla-García MA; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2017 Aug; 274(8):3121-3128. PubMed ID: 28547013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.