These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30759501)

  • 1. Preventive Control of Pythium Root Dysfunction in Creeping Bentgrass Putting Greens and Sensitivity of Pythium volutum to Fungicides.
    Kerns JP; Soika MD; Tredway LP
    Plant Dis; 2009 Dec; 93(12):1275-1280. PubMed ID: 30759501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Report of Pythium Root Dysfunction of Creeping Bentgrass Caused by Pythium volutum in North Carolina.
    Kerns JP; Tredway LP
    Plant Dis; 2007 May; 91(5):632. PubMed ID: 30780716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenicity of Pythium Species Associated with Pythium Root Dysfunction of Creeping Bentgrass and Their Impact on Root Growth and Survival.
    Kerns JP; Tredway LP
    Plant Dis; 2008 Jun; 92(6):862-869. PubMed ID: 30769721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Temperature on Pathogenicity of Pythium volutum Toward Creeping Bentgrass.
    Kerns JP; Tredway LP
    Plant Dis; 2008 Dec; 92(12):1669-1673. PubMed ID: 30764288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Fungicide Selections to Manage Pythium Root Rot on Poinsettia Cultivars with Varying Levels of Partial Resistance.
    Lookabaugh EC; Kerns JP; Shew BB
    Plant Dis; 2021 Jun; 105(6):1640-1647. PubMed ID: 33320042
    [No Abstract]   [Full Text] [Related]  

  • 6. Pythium Species Associated with Root Dysfunction of Creeping Bentgrass in Maryland.
    Feng Y; Dernoeden PH
    Plant Dis; 1999 Jun; 83(6):516-520. PubMed ID: 30849825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Chemical and Biological Control Applications for Pythium Root Rot Prevention and Impacts on Creeping Bentgrass Putting Green Rhizosphere Bacterial Communities.
    Doherty JR; Roberts JA
    Plant Dis; 2022 Feb; 106(2):641-647. PubMed ID: 34633241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Pythium spp. and Suppression of Pythium Blight of Turfgrasses with Phosphonate Fungicides.
    Cook PJ; Landschoot PJ; Schlossberg MJ
    Plant Dis; 2009 Aug; 93(8):809-814. PubMed ID: 30764327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced Sensitivity in Monilinia fructicola Field Isolates from South Carolina and Georgia to Respiration Inhibitor Fungicides.
    Amiri A; Brannen PM; Schnabel G
    Plant Dis; 2010 Jun; 94(6):737-743. PubMed ID: 30754318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and Molecular Identification of Azoxystrobin-Resistant Colletotrichum cereale Isolates from Golf Course Putting Greens in the Southern United States.
    Young JR; Tomaso-Peterson M; Tredway LP; de la Cerda K
    Plant Dis; 2010 Jun; 94(6):751-757. PubMed ID: 30754312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shift in Sensitivity of Alternaria solani in Response to Q
    Pasche JS; Wharam CM; Gudmestad NC
    Plant Dis; 2004 Feb; 88(2):181-187. PubMed ID: 30812426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual Efficacy of Fungicides for Controlling Brown Patch on Creeping Bentgrass Fairways.
    Daniels JP; Latin R
    Plant Dis; 2013 Dec; 97(12):1620-1625. PubMed ID: 30716863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Preventive Fungicide Applications for Fairy Ring Control in Golf Putting Greens and In Vitro Sensitivity of Fairy Ring Species to Fungicides.
    Miller GL; Soika MD; Tredway LP
    Plant Dis; 2012 Jul; 96(7):1001-1007. PubMed ID: 30727204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Properties of Composts That Suppress Damping-Off and Root Rot of Creeping Bentgrass Caused by Pythium graminicola.
    Craft CM; Nelson EB
    Appl Environ Microbiol; 1996 May; 62(5):1550-7. PubMed ID: 16535307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mefenoxam and pyraclostrobin: toxicity and in vitro inhibitory activity against Pythium insidiosum.
    Stibbe PC; Ianiski LB; Weiblen C; Maciel AF; Machado ML; da Silveira TL; Soares FAA; Santurio JM; Soares MP; Pereira DIB; Sangioni LA; de Avila Botton S
    Lett Appl Microbiol; 2022 Nov; 75(5):1383-1388. PubMed ID: 35971818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitness Attributes of Pythium aphanidermatum with Dual Resistance to Mefenoxam and Fenamidone.
    Lookabaugh EC; Kerns JP; Cubeta MA; Shew BB
    Plant Dis; 2018 Oct; 102(10):1938-1943. PubMed ID: 30265220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Baseline Sensitivity and Control Efficacy of Two Quinone Outside Inhibitor Fungicides, Azoxystrobin and Pyraclostrobin, Against
    Song JH; Zhang SJ; Wang Y; Chen YT; Luo JF; Liang Y; Zhang HC; Dai QG; Xu K; Huo ZY
    Plant Dis; 2022 Nov; 106(11):2967-2973. PubMed ID: 35306849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baseline Sensitivity of Guignardia citricarpa Isolates from Florida to Azoxystrobin and Pyraclostrobin.
    Hincapie M; Wang NY; Peres NA; Dewdney MM
    Plant Dis; 2014 Jun; 98(6):780-789. PubMed ID: 30708631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baseline Sensitivity of Ascochyta rabiei to Azoxystrobin, Pyraclostrobin, and Boscalid.
    Wise KA; Bradley CA; Pasche JS; Gudmestad NC; Dugan FM; Chen W
    Plant Dis; 2008 Feb; 92(2):295-300. PubMed ID: 30769388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pythium, Phytophthora, and Phytopythium spp. Associated with Soybean in Minnesota, Their Relative Aggressiveness on Soybean and Corn, and Their Sensitivity to Seed Treatment Fungicides.
    Radmer L; Anderson G; Malvick DM; Kurle JE; Rendahl A; Mallik A
    Plant Dis; 2017 Jan; 101(1):62-72. PubMed ID: 30682312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.