These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30759560)

  • 1. Leaf litter microbial decomposition in salinized streams under intermittency.
    Gonçalves AL; Simões S; Bärlocher F; Canhoto C
    Sci Total Environ; 2019 Feb; 653():1204-1212. PubMed ID: 30759560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stream salinization and fungal-mediated leaf decomposition: A microcosm study.
    Canhoto C; Simões S; Gonçalves AL; Guilhermino L; Bärlocher F
    Sci Total Environ; 2017 Dec; 599-600():1638-1645. PubMed ID: 28535592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrological contraction patterns and duration of drying period shape microbial-mediated litter decomposition.
    Simões S; Canhoto C; Bärlocher F; Gonçalves AL
    Sci Total Environ; 2021 Sep; 785():147312. PubMed ID: 33957592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple stressors affecting microbial decomposer and litter decomposition in restored urban streams: Assessing effects of salinization, increased temperature, and reduced flow velocity in a field mesocosm experiment.
    David GM; Pimentel IM; Rehsen PM; Vermiert AM; Leese F; Gessner MO
    Sci Total Environ; 2024 Sep; 943():173669. PubMed ID: 38839005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air temperature more than drought duration affects litter decomposition under flow intermittency.
    Simões S; Gonçalves AL; Jones TH; Sousa JP; Canhoto C
    Sci Total Environ; 2022 Jul; 829():154666. PubMed ID: 35314243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt pulses effects on in-stream litter processing and recovery capacity depend on substrata quality.
    Oliveira R; Martínez A; Gonçalves AL; Almeida Júnior ES; Canhoto C
    Sci Total Environ; 2021 Aug; 783():147013. PubMed ID: 33872895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates.
    Ferreira V; Gulis V; Graça MA
    Oecologia; 2006 Oct; 149(4):718-29. PubMed ID: 16858587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are fungal strains from salinized streams adapted to salt-rich conditions?
    Gonçalves AL; Carvalho A; Bärlocher F; Canhoto C
    Philos Trans R Soc Lond B Biol Sci; 2018 Dec; 374(1764):. PubMed ID: 30509917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain).
    Monroy S; Menéndez M; Basaguren A; Pérez J; Elosegi A; Pozo J
    Sci Total Environ; 2016 Dec; 573():1450-1459. PubMed ID: 27503627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches.
    Martínez A; Larrañaga A; Pérez J; Descals E; Pozo J
    FEMS Microbiol Ecol; 2014 Jan; 87(1):257-67. PubMed ID: 24111990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.
    Barros D; Oliveira P; Pascoal C; Cássio F
    Sci Total Environ; 2016 Sep; 565():489-495. PubMed ID: 27186876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.
    Ferreira V; Gonçalves AL; Canhoto C
    Mycologia; 2012; 104(3):613-22. PubMed ID: 22123653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal importance extends beyond litter decomposition in experimental early-successional streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Environ Microbiol; 2012 Nov; 14(11):2971-83. PubMed ID: 22958100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?
    Danger M; Cornut J; Chauvet E; Chavez P; Elger A; Lecerf A
    Ecology; 2013 Jul; 94(7):1604-13. PubMed ID: 23951720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal growth, production, and sporulation during leaf decomposition in two streams.
    Suberkropp K
    Appl Environ Microbiol; 2001 Nov; 67(11):5063-8. PubMed ID: 11679327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired leaf litter processing in acidified streams : learning from microbial enzyme activities.
    Clivot H; Danger M; Pagnout C; Wagner P; Rousselle P; Poupin P; Guérold F
    Microb Ecol; 2013 Jan; 65(1):1-11. PubMed ID: 22903164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of aluminium and phosphorus on microbial leaf litter processing in acidified streams: a microcosm approach.
    Clivot H; Charmasson F; Felten V; Boudot JP; Guérold F; Danger M
    Environ Pollut; 2014 Mar; 186():67-74. PubMed ID: 24361567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.