These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 30759570)

  • 41. Catalytic effect of dissolved humic acids on the chemical degradation of phenylurea herbicides.
    Salvestrini S; Capasso S; Iovino P
    Pest Manag Sci; 2008 Jul; 64(7):768-74. PubMed ID: 18318456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar.
    Sopeña F; Semple K; Sohi S; Bending G
    Chemosphere; 2012 Jun; 88(1):77-83. PubMed ID: 22464863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.
    Delgado-Moreno L; Almendros G; Peña A
    J Agric Food Chem; 2007 Feb; 55(3):836-43. PubMed ID: 17263483
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil.
    Eibisch N; Schroll R; Fuß R
    Chemosphere; 2015 Sep; 134():528-35. PubMed ID: 25543158
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial variability in 14C-herbicide degradation in surface and subsurface soils.
    Charnay MP; Tuis S; Coquet Y; Barriuso E
    Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of soil water regime on degradation and plant uptake behaviour of the herbicide isoproturon in different soil types.
    Grundmann S; Doerfler U; Munch JC; Ruth B; Schroll R
    Chemosphere; 2011 Mar; 82(10):1461-7. PubMed ID: 21144550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.
    Cabrera A; Cox L; Spokas KA; Celis R; Hermosín MC; Cornejo J; Koskinen WC
    J Agric Food Chem; 2011 Dec; 59(23):12550-60. PubMed ID: 22023336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils.
    Mulbach CK; Porthouse JD; Jugsujinda A; DeLaune RD; Johnson AB
    J Environ Sci Health B; 2000 Nov; 35(6):689-704. PubMed ID: 11069013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of oiled and de-oiled olive mill waste amendments on the sorption, leaching, and persistence of S-metolachlor in a calcareous clay soil.
    Peña D; Albarrán Á; López-Piñeiro A; Rato-Nunes JM; Sánchez-Llerena J; Becerra D
    J Environ Sci Health B; 2013; 48(9):767-75. PubMed ID: 23688227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 2,4-Dichlorophenoxy acetic acid mineralization in amended soil.
    Farenhorst A; Reimer M; Londry K; Saiyed I
    J Environ Sci Health B; 2006; 41(5):509-22. PubMed ID: 16785163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Environmental fate of the herbicide MCPA in agricultural soils amended with fresh and aged de-oiled two-phase olive mill waste.
    Peña D; López-Piñeiro A; Albarrán Á; Becerra D; Sánchez-Llerena J
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13915-25. PubMed ID: 25948384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sorption behavior of metolachlor, isoproturon, and terbuthylazine in soils.
    Singh N; Kloeppel H; Klein W
    J Environ Sci Health B; 2001 Jul; 36(4):397-407. PubMed ID: 11495018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissipation of terbuthylazine, metolachlor, and mesotrione in soils with contrasting texture.
    Carretta L; Cardinali A; Marotta E; Zanin G; Masin R
    J Environ Sci Health B; 2018; 53(10):661-668. PubMed ID: 29842837
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation and persistence of metolachlor in soil: effects of concentration, soil moisture, soil depth, and sterilization.
    Rice PJ; Anderson TA; Coats JR
    Environ Toxicol Chem; 2002 Dec; 21(12):2640-8. PubMed ID: 12463559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation kinetics of forchlorfenuron in typical grapevine soils of India and its influence on specific soil enzyme activities.
    Banerjee K; Dasgupta S; Oulkar DP; Patil SH; Adsule PG
    J Environ Sci Health B; 2008 May; 43(4):341-9. PubMed ID: 18437622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of grasses on herbicide fate in the soil column: infiltration of runoff, movement, and degradation.
    Belden JB; Coats JR
    Environ Toxicol Chem; 2004 Sep; 23(9):2251-8. PubMed ID: 15379004
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leaching potential of phenylurea herbicides in a calcareous soil: comparison of column elution and batch studies.
    Langeron J; Sayen S; Couderchet M; Guillon E
    Environ Sci Pollut Res Int; 2014 Apr; 21(7):4906-13. PubMed ID: 23097070
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of simplifying assumptions on pesticide degradation in soil.
    Beulke S; van Beinum W; Brown CD; Mitchell M; Walker A
    J Environ Qual; 2005; 34(6):1933-43. PubMed ID: 16221811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Environmental fate of trifluralin.
    Grover R; Wolt JD; Cessna AJ; Schiefer HB
    Rev Environ Contam Toxicol; 1997; 153():1-64. PubMed ID: 9380893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of temperature, organic amendment rate and moisture content on the degradation of 1,3-dichloropropene in soil.
    Dungan RS; Gan J; Yates SR
    Pest Manag Sci; 2001 Dec; 57(12):1107-13. PubMed ID: 11802597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.