BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30759577)

  • 1. Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion.
    Bohutskyi P; Phan D; Spierling RE; Kopachevsky AM; Bouwer EJ; Lundquist TJ; Betenbaugh MJ
    Sci Total Environ; 2019 Feb; 653():1377-1394. PubMed ID: 30759577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic co-digestion of wastewater grown algae-bacteria polyculture biomass and cellulose to optimize carbon-to-nitrogen ratio and application of kinetic models to predict anaerobic digestion energy balance.
    Bohutskyi P; Phan D; Kopachevsky AM; Chow S; Bouwer EJ; Betenbaugh MJ
    Bioresour Technol; 2018 Dec; 269():210-220. PubMed ID: 30173067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved methane yield from wastewater grown algal biomass.
    Thawani M; Hans N; Samuchiwal S; Prajapati SK
    Water Sci Technol; 2018 Aug; 78(1-2):81-91. PubMed ID: 30101791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.
    Park JB; Craggs RJ; Shilton AN
    Water Res; 2013 Sep; 47(13):4422-32. PubMed ID: 23764593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae.
    Avila R; Carrero E; Vicent T; Blánquez P
    Waste Manag; 2021 Apr; 124():254-263. PubMed ID: 33639410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants.
    Solé-Bundó M; Garfí M; Ferrer I
    Bioresour Technol; 2020 Feb; 298():122563. PubMed ID: 31841823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery.
    Bohutskyi P; Ketter B; Chow S; Adams KJ; Betenbaugh MJ; Allnutt FC; Bouwer EJ
    Bioresour Technol; 2015 May; 183():229-39. PubMed ID: 25746299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pre-treatments on the production of biofuels from Phaeodactylum tricornutum.
    Caporgno MP; Olkiewicz M; Torras C; Salvadó J; Clavero E; Bengoa C
    J Environ Manage; 2016 Jul; 177():240-6. PubMed ID: 27107392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass.
    Mahdy A; Mendez L; Ballesteros M; González-Fernández C
    Bioresour Technol; 2015 May; 184():236-244. PubMed ID: 25451781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.
    Costa JC; Gonçalves PR; Nobre A; Alves MM
    Bioresour Technol; 2012 Jun; 114():320-6. PubMed ID: 22459959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-digestion of microalga-bacteria biomass with papaya waste for methane production.
    Cea-Barcia G; Pérez J; Buitrón G
    Water Sci Technol; 2018 Aug; 78(1-2):125-131. PubMed ID: 30101795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic digestion of pulp and paper mill wastewater and sludge.
    Meyer T; Edwards EA
    Water Res; 2014 Nov; 65():321-49. PubMed ID: 25150519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgae conversion to biogas: thermal pretreatment contribution on net energy production.
    Passos F; Ferrer I
    Environ Sci Technol; 2014 Jun; 48(12):7171-8. PubMed ID: 24825469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of decreased hydraulic retention time on the performance and stability of co-digestion of sewage sludge with grease trap sludge and organic fraction of municipal waste.
    Grosser A
    J Environ Manage; 2017 Dec; 203(Pt 3):1143-1157. PubMed ID: 28468730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy recovery in high rate algal pond used for domestic wastewater treatment.
    Assemany PP; Calijuri ML; do Couto EA; da Silva FP; de Souza MHB
    Water Sci Technol; 2018 Aug; 78(1-2):12-19. PubMed ID: 30101784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge.
    Wei W; Zhou X; Xie GJ; Duan H; Wang Q
    Biotechnol Bioeng; 2017 Oct; 114(10):2245-2252. PubMed ID: 28600892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity and biogas production potential of refinery waste sludge for anaerobic digestion.
    Haak L; Roy R; Pagilla K
    Chemosphere; 2016 Feb; 144():1170-6. PubMed ID: 26461442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.
    Wang F; Hidaka T; Sakurai K; Tsumori J
    Bioresour Technol; 2014 Aug; 166():318-25. PubMed ID: 24926605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.
    Yalcinkaya S; Malina JF
    Waste Manag; 2015 Jun; 40():53-62. PubMed ID: 25818384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.