These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 30759589)
1. High-resolution inventory of mercury emissions from biomass burning in tropical continents during 2001-2017. Shi Y; Zhao A; Matsunaga T; Yamaguchi Y; Zang S; Li Z; Yu T; Gu X Sci Total Environ; 2019 Feb; 653():638-648. PubMed ID: 30759589 [TBL] [Abstract][Full Text] [Related]
2. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions. Shi Y; Matsunaga T; Yamaguchi Y Environ Sci Technol; 2015 Sep; 49(18):10806-14. PubMed ID: 26287650 [TBL] [Abstract][Full Text] [Related]
3. Mercury emissions from biomass burning in China. Huang X; Li M; Friedli HR; Song Y; Chang D; Zhu L Environ Sci Technol; 2011 Nov; 45(21):9442-8. PubMed ID: 21950526 [TBL] [Abstract][Full Text] [Related]
4. Comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from multiple satellite products. Shi Y; Matsunaga T; Saito M; Yamaguchi Y; Chen X Environ Pollut; 2015 Nov; 206():479-87. PubMed ID: 26281761 [TBL] [Abstract][Full Text] [Related]
5. Initial estimates of mercury emissions to the atmosphere from global biomass burning. Friedli HR; Arellano AF; Cinnirella S; Pirrone N Environ Sci Technol; 2009 May; 43(10):3507-13. PubMed ID: 19544847 [TBL] [Abstract][Full Text] [Related]
6. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Bhardwaj P; Naja M; Kumar R; Chandola HC Environ Sci Pollut Res Int; 2016 Mar; 23(5):4397-410. PubMed ID: 26503008 [TBL] [Abstract][Full Text] [Related]
7. Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Jaeglé L; Steinberger L; Martin RV; Chance K Faraday Discuss; 2005; 130():407-23; discussion 491-517, 519-24. PubMed ID: 16161795 [TBL] [Abstract][Full Text] [Related]
8. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Duc HN; Bang HQ; Quang NX Environ Monit Assess; 2016 Feb; 188(2):106. PubMed ID: 26797812 [TBL] [Abstract][Full Text] [Related]
9. High-resolution atmospheric mercury emission from open biomass burning in China: Integration of localized emission factors and multi-source finer resolution remote sensing data. Xu Z; Wang Z; Niu X; Tao J; Fan M; Wang B; Zhang M; Zhang X Environ Int; 2023 Aug; 178():108102. PubMed ID: 37572495 [TBL] [Abstract][Full Text] [Related]
10. Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016. Yin S; Wang X; Zhang X; Guo M; Miura M; Xiao Y Environ Pollut; 2019 Nov; 254(Pt A):112949. PubMed ID: 31376599 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal analysis of ground and satellite-based aerosol for air quality assessment in the Southeast Asia region. Nguyen TTN; Pham HV; Lasko K; Bui MT; Laffly D; Jourdan A; Bui HQ Environ Pollut; 2019 Dec; 255(Pt 1):113106. PubMed ID: 31541826 [TBL] [Abstract][Full Text] [Related]
12. Temporal comparison of global inventories of CO Shi Y; Matsunaga T Environ Sci Pollut Res Int; 2017 Jul; 24(20):16905-16916. PubMed ID: 28577139 [TBL] [Abstract][Full Text] [Related]
13. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources. Pouliot G; Rao V; McCarty JL; Soja A J Air Waste Manag Assoc; 2017 May; 67(5):613-622. PubMed ID: 27964698 [TBL] [Abstract][Full Text] [Related]
14. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Phairuang W; Suwattiga P; Chetiyanukornkul T; Hongtieab S; Limpaseni W; Ikemori F; Hata M; Furuuchi M Environ Pollut; 2019 Apr; 247():238-247. PubMed ID: 30685664 [TBL] [Abstract][Full Text] [Related]
15. Estimating mercury emissions resulting from wildfire in forests of the Western United States. Webster JP; Kane TJ; Obrist D; Ryan JN; Aiken GR Sci Total Environ; 2016 Oct; 568():578-586. PubMed ID: 26897612 [TBL] [Abstract][Full Text] [Related]
16. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Sigler JM; Lee X; Munger W Environ Sci Technol; 2003 Oct; 37(19):4343-7. PubMed ID: 14572083 [TBL] [Abstract][Full Text] [Related]
17. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010). Balch JK; Nagy RC; Archibald S; Bowman DM; Moritz MA; Roos CI; Scott AC; Williamson GJ Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216509 [TBL] [Abstract][Full Text] [Related]
18. Biomass burning spatiotemporal variations over South and Southeast Asia. Yin S Environ Int; 2020 Dec; 145():106153. PubMed ID: 33002702 [TBL] [Abstract][Full Text] [Related]
19. Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. Pellegrini AFA; Staver AC; Hedin LO; Charles-Dominique T; Tourgee A Ecology; 2016 Sep; 97(9):2177-2183. PubMed ID: 27859089 [TBL] [Abstract][Full Text] [Related]
20. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Ramo R; Roteta E; Bistinas I; van Wees D; Bastarrika A; Chuvieco E; van der Werf GR Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]