BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 30759591)

  • 21. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?
    Davin M; Starren A; Deleu M; Lognay G; Colinet G; Fauconnier ML
    Chemosphere; 2018 Mar; 194():414-421. PubMed ID: 29223812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils.
    Wu G; Kechavarzi C; Li X; Sui H; Pollard SJ; Coulon F
    Chemosphere; 2013 Feb; 90(8):2240-6. PubMed ID: 23141842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surfactant enhanced thermally activated persulfate remediating PAHs-contaminated soil: Insight into compatibility, degradation processes and mechanisms.
    Zhang W; Wu W; Wu J; Liu X; Tian J; Li H; Li Q; Zheng Y
    Chemosphere; 2023 Sep; 335():139086. PubMed ID: 37263513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mineralization of pyrene induced by interaction between Ochrobactrum sp. PW and ryegrass in spiked soil.
    Liu T; Wei L; Qiao M; Zou D; Yang X; Lin A
    Ecotoxicol Environ Saf; 2016 Nov; 133():290-6. PubMed ID: 27479773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil--water system.
    Cheng KY; Wong JW
    Chemosphere; 2006 Mar; 62(11):1907-16. PubMed ID: 16185745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PAH degradation capacity of soil microbial communities--does it depend on PAH exposure?
    Johnsen AR; Karlson U
    Microb Ecol; 2005 Nov; 50(4):488-95. PubMed ID: 16328660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential responses of eubacterial, Mycobacterium, and Sphingomonas communities in polycyclic aromatic hydrocarbon (PAH)-contaminated soil to artificially induced changes in PAH profile.
    Uyttebroek M; Spoden A; Ortega-Calvo JJ; Wouters K; Wattiau P; Bastiaens L; Springael D
    J Environ Qual; 2007; 36(5):1403-11. PubMed ID: 17766819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Bioremediation of Aged Polycyclic Aromatic Hydrocarbons in Soil Using Immobilized Microbial Consortia Combined with Strengthening Remediation Strategies.
    Zhou H; Gao X; Wang S; Zhang Y; Coulon F; Cai C
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil.
    Uyttebroek M; Breugelmans P; Janssen M; Wattiau P; Joffe B; Karlson U; Ortega-Calvo JJ; Bastiaens L; Ryngaert A; Hausner M; Springael D
    Environ Microbiol; 2006 May; 8(5):836-47. PubMed ID: 16623741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements.
    Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E
    Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant.
    Doong RA; Lei WG
    J Hazard Mater; 2003 Jan; 96(1):15-27. PubMed ID: 12475476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar.
    Xiong B; Zhang Y; Hou Y; Arp HPH; Reid BJ; Cai C
    Chemosphere; 2017 Sep; 182():316-324. PubMed ID: 28501571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria.
    Yu XZ; Wu SC; Wu FY; Wong MH
    J Hazard Mater; 2011 Feb; 186(2-3):1206-17. PubMed ID: 21176862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo[a]pyrene degradation by the addition of Tween-80.
    Wang C; Liu H; Li J; Sun H
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10614-25. PubMed ID: 24878554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils.
    Bueno-Montes M; Springael D; Ortega-Calvo JJ
    Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surfactant-enhanced bioremediation of DDTs and PAHs in contaminated farmland soil.
    Wang X; Sun L; Wang H; Wu H; Chen S; Zheng X
    Environ Technol; 2018 Jul; 39(13):1733-1744. PubMed ID: 28562189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons.
    Ma X; Li X; Liu J; Cheng Y; Zou J; Zhai F; Sun Z; Han L
    Sci Total Environ; 2021 Jan; 752():142224. PubMed ID: 33207520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum.
    Cheng KY; Lai KM; Wong JW
    Chemosphere; 2008 Oct; 73(5):791-7. PubMed ID: 18672265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.
    Wang C; Wang Z; Li Z; Ahmad R
    Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.