These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30759596)

  • 21. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification.
    Miao L; Hou J; You G; Liu Z; Liu S; Li T; Mo Y; Guo S; Qu H
    Environ Pollut; 2019 Dec; 255(Pt 2):113300. PubMed ID: 31610513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques.
    Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V
    Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.
    Heinlaan M; Muna M; Knöbel M; Kistler D; Odzak N; Kühnel D; Müller J; Gupta GS; Kumar A; Shanker R; Sigg L
    Environ Pollut; 2016 Sep; 216():689-699. PubMed ID: 27357482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.
    Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L
    Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms.
    Ouyang K; Yu XY; Zhu Y; Gao C; Huang Q; Cai P
    Environ Pollut; 2017 Dec; 231(Pt 1):1104-1111. PubMed ID: 28851497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus?
    Ma J; Chen QL; O'Connor P; Sheng GD
    Environ Pollut; 2020 Jan; 256():113463. PubMed ID: 31677875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments.
    Bao S; Wang H; Zhang W; Xie Z; Fang T
    Environ Pollut; 2016 Dec; 219():696-704. PubMed ID: 27396616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure.
    Thit A; Ramskov T; Croteau MN; Selck H
    Aquat Toxicol; 2016 Nov; 180():25-35. PubMed ID: 27640154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biotic and Abiotic Interactions in Freshwater Mesocosms Determine Fate and Toxicity of CuO Nanoparticles.
    Gräf T; Koch V; Köser J; Fischer J; Tessarek C; Filser J
    Environ Sci Technol; 2023 Aug; 57(33):12376-12387. PubMed ID: 37561908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term synergic removal performance of N, P, and CuO nanoparticles in constructed wetlands along with temporal record of Cu pollution in substrate-biofilm.
    Yan C; Li X; Huang J; Cao C; Ji X; Qian X; Wei Z
    Environ Pollut; 2023 Apr; 322():121231. PubMed ID: 36754199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cutting-edge spectroscopy techniques highlight toxicity mechanisms of copper oxide nanoparticles in the aquatic plant Myriophyllum spicatum.
    Roubeau Dumont E; Elger A; Azéma C; Castillo Michel H; Surble S; Larue C
    Sci Total Environ; 2022 Jan; 803():150001. PubMed ID: 34492493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium.
    Chen Z; Gao SH; Jin M; Sun S; Lu J; Yang P; Bond PL; Yuan Z; Guo J
    Environ Int; 2019 Apr; 125():65-74. PubMed ID: 30710801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: Tetradesmus obliquus.
    Fang R; Gong J; Cao W; Chen Z; Huang D; Ye J; Cai Z
    J Environ Sci (China); 2022 Feb; 112():376-387. PubMed ID: 34955220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Nanosize effect" in the metal-handling strategy of the bivalve Scrobicularia plana exposed to CuO nanoparticles and copper ions in whole-sediment toxicity tests.
    Scola S; Blasco J; Campana O
    Sci Total Environ; 2021 Mar; 760():143886. PubMed ID: 33340740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea.
    Koehle-Divo V; Sohm B; Giamberini L; Pauly D; Flayac J; Devin S; Auffan M; Mouneyrac C; Pain-Devin S
    Environ Pollut; 2019 Nov; 254(Pt A):112976. PubMed ID: 31404732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.
    Grün AY; Meier J; Metreveli G; Schaumann GE; Manz W
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24277-24288. PubMed ID: 27650851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses of Bacterial Communities to CuO Nanoparticles in Activated Sludge System.
    Wang X; Li J; Liu R; Hai R; Zou D; Zhu X; Luo N
    Environ Sci Technol; 2017 May; 51(10):5368-5376. PubMed ID: 28410439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions.
    Zhao J; Liu Y; Pan B; Gao G; Liu Y; Liu S; Liang N; Zhou D; Vijver MG; Peijnenburg WJGM
    Water Res; 2017 Dec; 127():59-67. PubMed ID: 29031800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of extracellular polymeric substances and microbial community structures on resistance genes expression in wastewater treatment containing copper oxide nanoparticles and humic acid.
    Li Y; Wang J; Li B; Geng M; Wang Y; Zhao J; Jin B; Li Y
    Bioresour Technol; 2021 Nov; 340():125741. PubMed ID: 34426248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.