These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 30759739)

  • 1. Genetic Determinants of the Re-Emergence of Arboviral Diseases.
    Ketkar H; Herman D; Wang P
    Viruses; 2019 Feb; 11(2):. PubMed ID: 30759739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases.
    Weaver SC; Charlier C; Vasilakis N; Lecuit M
    Annu Rev Med; 2018 Jan; 69():395-408. PubMed ID: 28846489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Urban Arboviruses Can Infect Wild Animals and Jump to Sylvatic Maintenance Cycles in South America.
    Figueiredo LTM
    Front Cell Infect Microbiol; 2019; 9():259. PubMed ID: 31380302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Do Virus-Mosquito Interactions Lead to Viral Emergence?
    Rückert C; Ebel GD
    Trends Parasitol; 2018 Apr; 34(4):310-321. PubMed ID: 29305089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges.
    Dusfour I; Vontas J; David JP; Weetman D; Fonseca DM; Corbel V; Raghavendra K; Coulibaly MB; Martins AJ; Kasai S; Chandre F
    PLoS Negl Trop Dis; 2019 Oct; 13(10):e0007615. PubMed ID: 31600206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From dengue to Zika: the wide spread of mosquito-borne arboviruses.
    Sukhralia S; Verma M; Gopirajan S; Dhanaraj PS; Lal R; Mehla N; Kant CR
    Eur J Clin Microbiol Infect Dis; 2019 Jan; 38(1):3-14. PubMed ID: 30267170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever.
    Guarner J; Hale GL
    Semin Diagn Pathol; 2019 May; 36(3):170-176. PubMed ID: 31006554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spread of Zika and the potential for global arbovirus syndemics.
    Singer M
    Glob Public Health; 2017 Jan; 12(1):1-18. PubMed ID: 27590737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mosquitoes as vectors of arboviruses: an endless story].
    Failloux AB
    Biol Aujourdhui; 2018; 212(3-4):89-99. PubMed ID: 30973138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses.
    Tabachnick WJ
    Annu Rev Virol; 2016 Sep; 3(1):125-145. PubMed ID: 27482902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential.
    Armstrong PM; Ehrlich HY; Magalhaes T; Miller MR; Conway PJ; Bransfield A; Misencik MJ; Gloria-Soria A; Warren JL; Andreadis TG; Shepard JJ; Foy BD; Pitzer VE; Brackney DE
    Nat Microbiol; 2020 Feb; 5(2):239-247. PubMed ID: 31819213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular manifestations of emerging arboviruses: Dengue fever, Chikungunya, Zika virus, West Nile virus, and yellow fever.
    Merle H; Donnio A; Jean-Charles A; Guyomarch J; Hage R; Najioullah F; Césaire R; Cabié A
    J Fr Ophtalmol; 2018 Jun; 41(6):e235-e243. PubMed ID: 29929827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa.
    Agboli E; Zahouli JBZ; Badolo A; Jöst H
    Viruses; 2021 May; 13(5):. PubMed ID: 34065928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies.
    Segura NA; Muñoz AL; Losada-Barragán M; Torres O; Rodríguez AK; Rangel H; Bello F
    Pathog Dis; 2021 Sep; 79(7):. PubMed ID: 34410378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mosquito-borne arboviruses in Uganda: history, transmission and burden.
    Mayanja MN; Mwiine FN; Lutwama JJ; Ssekagiri A; Egesa M; Thomson EC; Kohl A
    J Gen Virol; 2021 Jun; 102(6):. PubMed ID: 34166178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiviral Compounds for Blocking Arboviral Transmission in Mosquitoes.
    Dong S; Dimopoulos G
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33466915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence and re-emergence of mosquito-borne arboviruses.
    Huang YS; Higgs S; Vanlandingham DL
    Curr Opin Virol; 2019 Feb; 34():104-109. PubMed ID: 30743191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus.
    Leta S; Beyene TJ; De Clercq EM; Amenu K; Kraemer MUG; Revie CW
    Int J Infect Dis; 2018 Feb; 67():25-35. PubMed ID: 29196275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serological Evidence of Contrasted Exposure to Arboviral Infections between Islands of the Union of Comoros (Indian Ocean).
    Dellagi K; Salez N; Maquart M; Larrieu S; Yssouf A; Silaï R; Leparc-Goffart I; Tortosa P; de Lamballerie X
    PLoS Negl Trop Dis; 2016 Dec; 10(12):e0004840. PubMed ID: 27977670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress towards Understanding the Mosquito-Borne Virus Life Cycle.
    Yu X; Zhu Y; Xiao X; Wang P; Cheng G
    Trends Parasitol; 2019 Dec; 35(12):1009-1017. PubMed ID: 31669148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.