These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30759906)
41. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Wang Y; Wu F; Bai J; He Y Plant Biotechnol J; 2014 Apr; 12(3):312-21. PubMed ID: 24237584 [TBL] [Abstract][Full Text] [Related]
42. Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of chinese cabbage (brassica campestris ssp. pekinensis cv. 'spring flavor'). Jun S; Kwon SY; Pack KY; Paek KH Plant Cell Rep; 1995 Jul; 14(10):620-5. PubMed ID: 24194308 [TBL] [Abstract][Full Text] [Related]
43. HTT2 promotes plant thermotolerance in Brassica rapa. Jiang J; Bai J; Li S; Li X; Yang L; He Y BMC Plant Biol; 2018 Jun; 18(1):127. PubMed ID: 29925322 [TBL] [Abstract][Full Text] [Related]
44. Glucosinolate Profiles in Cabbage Genotypes Influence the Preferential Feeding of Diamondback Moth ( Robin AHK; Hossain MR; Park JI; Kim HR; Nou IS Front Plant Sci; 2017; 8():1244. PubMed ID: 28769953 [TBL] [Abstract][Full Text] [Related]
45. Cry Proteins from Bacillus thuringiensis Active against Diamondback Moth and Fall Armyworm. Silva MC; Siqueira HA; Silva LM; Marques EJ; Barros R Neotrop Entomol; 2015 Aug; 44(4):392-401. PubMed ID: 26070631 [TBL] [Abstract][Full Text] [Related]
46. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Guo Z; Sun D; Kang S; Zhou J; Gong L; Qin J; Guo L; Zhu L; Bai Y; Luo L; Zhang Y Insect Biochem Mol Biol; 2019 Apr; 107():31-38. PubMed ID: 30710623 [TBL] [Abstract][Full Text] [Related]
47. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). Guo Z; Kang S; Zhu X; Xia J; Wu Q; Wang S; Xie W; Zhang Y Insect Biochem Mol Biol; 2015 Apr; 59():30-40. PubMed ID: 25636859 [TBL] [Abstract][Full Text] [Related]
48. Using yellow rocket as a trap crop for diamondback moth (Lepidoptera: Plutellidae). Badenes-Perez FR; Shelton AM; Nault BA J Econ Entomol; 2005 Jun; 98(3):884-90. PubMed ID: 16022317 [TBL] [Abstract][Full Text] [Related]
49. Influences of Cry1Ac broccoli on larval survival and oviposition of diamondback moth. Yi D; Cui S; Yang L; Fang Z; Liu Y; Zhuang M; Zhang Y J Insect Sci; 2015; 15(1):. PubMed ID: 25843583 [TBL] [Abstract][Full Text] [Related]
50. Efficacy of Bacillus thuringiensis (var. kurstaki) Against Diamondback Moth (Plutella xylostella L.) Eggs and Larvae on Cabbage Under Semi-Controlled Greenhouse Conditions. Legwaila MM; Munthali DC; Kwerepe BC; Obopile M Int J Insect Sci; 2015; 7():39-45. PubMed ID: 26816488 [TBL] [Abstract][Full Text] [Related]
51. Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Moon HS; Halfhill MD; Good LL; Raymer PL; Neal Stewart C Plant Cell Rep; 2007 Jul; 26(7):1001-10. PubMed ID: 17333014 [TBL] [Abstract][Full Text] [Related]
52. [Transformation of Bt-CpTi fusion protein gene to cabbage (Brassica oleracea var. capitata) mediated by Agrobacterium tumefaciens and particle bombardment]. Yang GD; Zhu Z; Li YO; Zhu ZJ Shi Yan Sheng Wu Xue Bao; 2002 Jun; 35(2):117-22. PubMed ID: 15344329 [TBL] [Abstract][Full Text] [Related]
53. Predation on Diamondback Moth Larvae and Aphid by Resistant and Susceptible Lady Beetle, Eriopis connexa. Lira R; Nascimento DV; Torres JB; Siqueira HAA Neotrop Entomol; 2019 Dec; 48(6):909-918. PubMed ID: 31321624 [TBL] [Abstract][Full Text] [Related]
54. Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis). Saha G; Park JI; Ahmed NU; Kayum MA; Kang KK; Nou IS Plant Physiol Biochem; 2016 Jul; 104():200-15. PubMed ID: 27038155 [TBL] [Abstract][Full Text] [Related]
55. DNA Methylation Level Changes in Transgenic Chinese Cabbage ( Park JS; Shin YH; Park YD Genes (Basel); 2021 Sep; 12(10):. PubMed ID: 34680957 [TBL] [Abstract][Full Text] [Related]
56. Promising new technology for managing diamondback moth (Lepidoptera: Plutellidae) in cabbage with pheromone. Mitchell ER J Environ Sci Health B; 2002 May; 37(3):277-90. PubMed ID: 12009198 [TBL] [Abstract][Full Text] [Related]
57. Effects of host plant and genetic background on the fitness costs of resistance to Bacillus thuringiensis. Raymond B; Wright DJ; Bonsall MB Heredity (Edinb); 2011 Feb; 106(2):281-8. PubMed ID: 20517345 [TBL] [Abstract][Full Text] [Related]
58. Inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a greenhouse-derived strain of cabbage looper (Lepidoptera: Noctuidae). Kain WC; Zhao JZ; Janmaat AF; Myers J; Shelton AM; Wang P J Econ Entomol; 2004 Dec; 97(6):2073-8. PubMed ID: 15666767 [TBL] [Abstract][Full Text] [Related]
59. Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Min BW; Cho YN; Song MJ; Noh TK; Kim BK; Chae WK; Park YS; Choi YD; Harn CH Plant Cell Rep; 2007 Mar; 26(3):337-44. PubMed ID: 17021847 [TBL] [Abstract][Full Text] [Related]