These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 30760050)
1. Real-time tracking of surgical instruments based on spatio-temporal context and deep learning. Zhao Z; Chen Z; Voros S; Cheng X Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):20-29. PubMed ID: 30760050 [TBL] [Abstract][Full Text] [Related]
2. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Zhao Z; Voros S; Weng Y; Chang F; Li R Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):26-35. PubMed ID: 28937281 [TBL] [Abstract][Full Text] [Related]
3. Image-based laparoscopic tool detection and tracking using convolutional neural networks: a review of the literature. Yang C; Zhao Z; Hu S Comput Assist Surg (Abingdon); 2020 Dec; 25(1):15-28. PubMed ID: 32886540 [TBL] [Abstract][Full Text] [Related]
4. [Review of research on detection and tracking of minimally invasive surgical tools based on deep learning]. Liu Y; Zhao Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):870-878. PubMed ID: 31631638 [TBL] [Abstract][Full Text] [Related]
5. Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos. Nwoye CI; Mutter D; Marescaux J; Padoy N Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1059-1067. PubMed ID: 30968356 [TBL] [Abstract][Full Text] [Related]
6. Patch-based adaptive weighting with segmentation and scale (PAWSS) for visual tracking in surgical video. Du X; Allan M; Bodenstedt S; Maier-Hein L; Speidel S; Dore A; Stoyanov D Med Image Anal; 2019 Oct; 57():120-135. PubMed ID: 31299494 [TBL] [Abstract][Full Text] [Related]
7. Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery. Du X; Allan M; Dore A; Ourselin S; Hawkes D; Kelly JD; Stoyanov D Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1109-19. PubMed ID: 27038963 [TBL] [Abstract][Full Text] [Related]
8. Long Term Safety Area Tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery. Penza V; Du X; Stoyanov D; Forgione A; Mattos LS; De Momi E Med Image Anal; 2018 Apr; 45():13-23. PubMed ID: 29329053 [TBL] [Abstract][Full Text] [Related]
9. MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation. Stiemer LN; Thoma A; Braun C PLoS One; 2023; 18(9):e0291415. PubMed ID: 37738269 [TBL] [Abstract][Full Text] [Related]
10. Convolutional neural network-based surgical instrument detection. Cai T; Zhao Z Technol Health Care; 2020; 28(S1):81-88. PubMed ID: 32333566 [TBL] [Abstract][Full Text] [Related]
11. Surgical tool segmentation and localization using spatio-temporal deep network. Kanakatte A; Ramaswamy A; Gubbi J; Ghose A; Purushothaman B Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1658-1661. PubMed ID: 33018314 [TBL] [Abstract][Full Text] [Related]
12. Oversaturated part-based visual tracking via spatio-temporal context learning. Liu W; Li J; Shi Z; Chen X; Chen X Appl Opt; 2016 Sep; 55(25):6960-8. PubMed ID: 27607271 [TBL] [Abstract][Full Text] [Related]
13. Vision-based and marker-less surgical tool detection and tracking: a review of the literature. Bouget D; Allan M; Stoyanov D; Jannin P Med Image Anal; 2017 Jan; 35():633-654. PubMed ID: 27744253 [TBL] [Abstract][Full Text] [Related]
14. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related]
15. Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Dunnhofer M; Antico M; Sasazawa F; Takeda Y; Camps S; Martinel N; Micheloni C; Carneiro G; Fontanarosa D Med Image Anal; 2020 Feb; 60():101631. PubMed ID: 31927473 [TBL] [Abstract][Full Text] [Related]
16. Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art. Rueckert T; Rueckert D; Palm C Comput Biol Med; 2024 Feb; 169():107929. PubMed ID: 38184862 [TBL] [Abstract][Full Text] [Related]
17. Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking. Huang P; Yu G; Lu H; Liu D; Xing L; Yin Y; Kovalchuk N; Xing L; Li D Med Phys; 2019 May; 46(5):2275-2285. PubMed ID: 30912590 [TBL] [Abstract][Full Text] [Related]
18. A Spatio-Temporal Ensemble Deep Learning Architecture for Real-Time Defect Detection during Laser Welding on Low Power Embedded Computing Boards. Knaak C; von Eßen J; Kröger M; Schulze F; Abels P; Gillner A Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207475 [TBL] [Abstract][Full Text] [Related]
19. A real-time system using deep learning to detect and track ureteral orifices during urinary endoscopy. Liu D; Peng X; Liu X; Li Y; Bao Y; Xu J; Bian X; Xue W; Qian D Comput Biol Med; 2021 Jan; 128():104104. PubMed ID: 33220590 [TBL] [Abstract][Full Text] [Related]
20. Temporal contexts for motion tracking in ultrasound sequences with information bottleneck. Sun M; Huang W; Zhang H; Shi Y; Wang J; Gong Q; Wang X Med Phys; 2023 Sep; 50(9):5553-5567. PubMed ID: 36866782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]