These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30760208)

  • 1. PmiRDiscVali: an integrated pipeline for plant microRNA discovery and validation.
    Yu D; Wan Y; Ito H; Ma X; Xie T; Wang T; Shao C; Meng Y
    BMC Genomics; 2019 Feb; 20(1):133. PubMed ID: 30760208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of high-throughput sequencing methods for plant microRNA research.
    Ma X; Tang Z; Qin J; Meng Y
    RNA Biol; 2015; 12(7):709-19. PubMed ID: 26016494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb.
    Meng Y; Yu D; Xue J; Lu J; Feng S; Shen C; Wang H
    Sci Rep; 2016 Jan; 6():18864. PubMed ID: 26732614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reversed framework for the identification of microRNA-target pairs in plants.
    Shao C; Chen M; Meng Y
    Brief Bioinform; 2013 May; 14(3):293-301. PubMed ID: 22811545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data.
    An J; Lai J; Sajjanhar A; Lehman ML; Nelson CC
    BMC Bioinformatics; 2014 Aug; 15(1):275. PubMed ID: 25117656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bioinformatics Pipeline to Accurately and Efficiently Analyze the MicroRNA Transcriptomes in Plants.
    Wang Y; Kuang Z; Li L; Yang X
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sRIS: A Small RNA Illustration System for Plant Next-Generation Sequencing Data Analysis.
    Tseng KC; Chiang-Hsieh YF; Pai H; Wu NY; Zheng HQ; Chow CN; Lee TY; Chang SB; Lin NS; Chang WC
    Plant Cell Physiol; 2020 Jun; 61(6):1204-1212. PubMed ID: 32181856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DPMIND: degradome-based plant miRNA-target interaction and network database.
    Fei Y; Wang R; Li H; Liu S; Zhang H; Huang J
    Bioinformatics; 2018 May; 34(9):1618-1620. PubMed ID: 29280990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA degradome: a precious resource for deciphering RNA processing and regulation codes in plants.
    Ma X; Yin X; Tang Z; Ito H; Shao C; Meng Y; Xie T
    RNA Biol; 2020 Sep; 17(9):1223-1227. PubMed ID: 32338184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive Web-based Annotation of Plant MicroRNAs with iwa-miRNA.
    Zhang T; Zhai J; Zhang X; Ling L; Li M; Xie S; Song M; Ma C
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):557-567. PubMed ID: 34332120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets.
    Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L
    Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradome Sequencing in Plants.
    Lin SS; Chen Y; Lu MJ
    Methods Mol Biol; 2019; 1932():197-213. PubMed ID: 30701502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing.
    Chen M; Bao H; Wu Q; Wang Y
    Int J Mol Sci; 2015 Jun; 16(6):13937-58. PubMed ID: 26096002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miRA: adaptable novel miRNA identification in plants using small RNA sequencing data.
    Evers M; Huttner M; Dueck A; Meister G; Engelmann JC
    BMC Bioinformatics; 2015 Nov; 16():370. PubMed ID: 26542525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of conserved and novel microRNAs in Porphyridium purpureum via deep sequencing and bioinformatics.
    Gao F; Nan F; Feng J; Lv J; Liu Q; Xie S
    BMC Genomics; 2016 Aug; 17(1):612. PubMed ID: 27516065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey of software tools for microRNA discovery and characterization using RNA-seq.
    Bortolomeazzi M; Gaffo E; Bortoluzzi S
    Brief Bioinform; 2019 May; 20(3):918-930. PubMed ID: 29126230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodologies for Discovery and Quantitative Profiling of sRNAs in Potato.
    Križnik M; Zagorščak M; Gruden K
    Methods Mol Biol; 2021; 2354():221-260. PubMed ID: 34448163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.