These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
683 related articles for article (PubMed ID: 30760287)
1. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fibrillation-related stroke. Zou R; Zhang D; Lv L; Shi W; Song Z; Yi B; Lai B; Chen Q; Yang S; Hua P J Transl Med; 2019 Feb; 17(1):45. PubMed ID: 30760287 [TBL] [Abstract][Full Text] [Related]
2. Identification of potential crucial genes in atrial fibrillation: a bioinformatic analysis. Zhang J; Huang X; Wang X; Gao Y; Liu L; Li Z; Chen X; Zeng J; Ye Z; Li G BMC Med Genomics; 2020 Jul; 13(1):104. PubMed ID: 32682418 [TBL] [Abstract][Full Text] [Related]
3. Integrative identification of hub genes in development of atrial fibrillation related stroke. Huang K; Fan X; Jiang Y; Jin S; Huang J; Pang L; Wang Y; Wu Y; Sun X PLoS One; 2023; 18(3):e0283617. PubMed ID: 36952494 [TBL] [Abstract][Full Text] [Related]
4. Identification of genes and key pathways underlying the pathophysiological association between nonalcoholic fatty liver disease and atrial fibrillation. Chu Y; Yu F; Wu Y; Yang J; Shi J; Ye T; Han D; Wang X BMC Med Genomics; 2022 Jul; 15(1):150. PubMed ID: 35790963 [TBL] [Abstract][Full Text] [Related]
5. Inflammation as a risk factor for stroke in atrial fibrillation: data from a microarray data analysis. Li Y; Tan W; Ye F; Wen S; Hu R; Cai X; Wang K; Wang Z J Int Med Res; 2020 May; 48(5):300060520921671. PubMed ID: 32367757 [TBL] [Abstract][Full Text] [Related]
6. Potential Target Genes in the Development of Atrial Fibrillation: A Comprehensive Bioinformatics Analysis. Liu L; Yu Y; Hu LL; Dong QB; Hu F; Zhu LJ; Liang Q; Yu LL; Bao HH; Cheng XS Med Sci Monit; 2021 Mar; 27():e928366. PubMed ID: 33741890 [TBL] [Abstract][Full Text] [Related]
7. Identification of Pivotal MicroRNAs and Target Genes Associated with Persistent Atrial Fibrillation Based on Bioinformatics Analysis. Xiao S; Zhou Y; Liu Q; Zhang T; Pan D Comput Math Methods Med; 2021; 2021():6680211. PubMed ID: 33747117 [TBL] [Abstract][Full Text] [Related]
8. Identification of potential novel biomarkers and therapeutic targets involved in human atrial fibrillation based on bioinformatics analysis. Fan G; Wei J Kardiol Pol; 2020 Aug; 78(7-8):694-702. PubMed ID: 32383373 [TBL] [Abstract][Full Text] [Related]
9. Identification of atrial fibrillation-related circular RNAs and constructing the integrative regulatory network of circular RNAs, microRNAs and mRNAs by bioinformatics analysis. Zhai Z; Qin T; Liu F; Han L; Zhou H; Li Q; Xia Z; Li J Cell Mol Biol (Noisy-le-grand); 2020 Oct; 66(7):161-168. PubMed ID: 33287936 [TBL] [Abstract][Full Text] [Related]
10. Mining of Potential Biomarkers and Pathway in Valvular Atrial Fibrillation (VAF) via Systematic Screening of Gene Coexpression Network. Zou F; Chen T; Xiang X; Peng C; Huang S; Ma S Comput Math Methods Med; 2022; 2022():3645402. PubMed ID: 36226239 [TBL] [Abstract][Full Text] [Related]
11. Bioinformatic analysis of potential biomarkers and mechanisms of immune infiltration in mitral regurgitation complicated by atrial fibrillation. Li Z; Kong P; Wen B; Wang S; Zhang F; Ouyang W; Pan X Ann Transl Med; 2022 Nov; 10(21):1174. PubMed ID: 36467340 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Analysis of Pertinent Genes and Pathways in Atrial Fibrillation. Wang Y; Cai W; Gu L; Ji X; Shen Q Comput Math Methods Med; 2021; 2021():4530180. PubMed ID: 35003319 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatic analysis for the identification of potential gene interactions and therapeutic targets in atrial fibrillation. Yu SD; Yu JY; Guo Y; Liu XY; Liang T; Chen LZ; Chu YP; Zhang HP Eur Rev Med Pharmacol Sci; 2021 Mar; 25(5):2281-2290. PubMed ID: 33755965 [TBL] [Abstract][Full Text] [Related]
14. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. Cheng Q; Chen X; Wu H; Du Y J Transl Med; 2021 Jan; 19(1):18. PubMed ID: 33407587 [TBL] [Abstract][Full Text] [Related]
15. Identification of microRNA-mRNA interactions in atrial fibrillation using microarray expression profiles and bioinformatics analysis. Wang T; Wang B Mol Med Rep; 2016 Jun; 13(6):4535-40. PubMed ID: 27082053 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA Regulatory Network Revealing the Mechanism of Inflammation in Atrial Fibrillation. Zhang H; Liu L; Hu J; Song L Med Sci Monit; 2015 Nov; 21():3505-13. PubMed ID: 26567235 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA Expression Profiles Identify Biomarker for Differentiating the Embolic Stroke from Thrombotic Stroke. Chen LT; Jiang CY Biomed Res Int; 2018; 2018():4514178. PubMed ID: 30627556 [TBL] [Abstract][Full Text] [Related]
18. Study on potential differentially expressed genes in stroke by bioinformatics analysis. Yang X; Wang P; Yan S; Wang G Neurol Sci; 2022 Feb; 43(2):1155-1166. PubMed ID: 34313877 [TBL] [Abstract][Full Text] [Related]
19. Identification of Genes and Key Pathways Associated with the Pathophysiology of Lung Cancer and Atrial Fibrillation. Yang D; Chen Y; Yu Y; Chen X Altern Ther Health Med; 2024 Mar; 30(3):68-75. PubMed ID: 37883760 [TBL] [Abstract][Full Text] [Related]
20. Bioinformatic analysis identifies potential biomarkers and therapeutic targets of septic-shock-associated acute kidney injury. Tang Y; Yang X; Shu H; Yu Y; Pan S; Xu J; Shang Y Hereditas; 2021 Apr; 158(1):13. PubMed ID: 33863396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]