BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 30760609)

  • 21. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans.
    Halder V; Porter CBM; Chavez A; Shapiro RS
    Nat Protoc; 2019 Mar; 14(3):955-975. PubMed ID: 30737491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and implementation of a Type I-C CRISPR-based programmable repression system for
    Geslewitz WE; Cardenas A; Zhou X; Zhang Y; Criss AK; Seifert HS
    mBio; 2024 Feb; 15(2):e0302523. PubMed ID: 38126782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward tunable dynamic repression using CRISPRi.
    Jang S; Jang S; Jung GY
    Biotechnol J; 2018 Sep; 13(9):e1800152. PubMed ID: 29714047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulating Gene Expression in Epstein-Barr Virus (EBV)-Positive B Cell Lines with CRISPRa and CRISPRi.
    Wang LW; Trudeau SJ; Wang C; Gerdt C; Jiang S; Zhao B; Gewurz BE
    Curr Protoc Mol Biol; 2018 Jan; 121():31.13.1-31.13.18. PubMed ID: 29337370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9.
    Cui L; Vigouroux A; Rousset F; Varet H; Khanna V; Bikard D
    Nat Commun; 2018 May; 9(1):1912. PubMed ID: 29765036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implementation of dCas9-mediated CRISPRi in the fission yeast Schizosaccharomyces pombe.
    Ishikawa K; Soejima S; Masuda F; Saitoh S
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33617628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans.
    Shapiro RS; Chavez A; Porter CBM; Hamblin M; Kaas CS; DiCarlo JE; Zeng G; Xu X; Revtovich AV; Kirienko NV; Wang Y; Church GM; Collins JJ
    Nat Microbiol; 2018 Jan; 3(1):73-82. PubMed ID: 29062088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dramatic Improvement of CRISPR/Cas9 Editing in
    Ng H; Dean N
    mSphere; 2017; 2(2):. PubMed ID: 28435892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120.
    Higo A; Isu A; Fukaya Y; Ehira S; Hisabori T
    Plant Cell Physiol; 2018 Jan; 59(1):119-127. PubMed ID: 29112727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference.
    Kim B; Kim HJ; Lee SJ
    J Microbiol Biotechnol; 2020 Dec; 30(12):1919-1926. PubMed ID: 32958732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.
    Lawhorn IE; Ferreira JP; Wang CL
    PLoS One; 2014; 9(11):e113232. PubMed ID: 25398078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR interference and its applications.
    Ghavami S; Pandi A
    Prog Mol Biol Transl Sci; 2021; 180():123-140. PubMed ID: 33934834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Development of CRISPR technology and its application in bone and cartilage tissue engineering].
    Chen G; Cheng D; Chen B
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Dec; 39(12):1515-1520. PubMed ID: 31907146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium
    Knoot CJ; Biswas S; Pakrasi HB
    ACS Synth Biol; 2020 Jan; 9(1):132-143. PubMed ID: 31829621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multiplex CRISPR interference tool for virulence gene interrogation in Legionella pneumophila.
    Ellis NA; Kim B; Tung J; Machner MP
    Commun Biol; 2021 Feb; 4(1):157. PubMed ID: 33542442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.