BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 30760609)

  • 61. CRISPR-Mediated Genome Editing in the Human Fungal Pathogen C. albicans.
    Evans BA; Bernstein DA
    Methods Mol Biol; 2022; 2542():3-12. PubMed ID: 36008653
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria.
    Kim G; Kim HJ; Kim K; Kim HJ; Yang J; Seo SW
    Nat Commun; 2024 Jun; 15(1):5319. PubMed ID: 38909033
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tuning the Expression of Long Noncoding RNA Loci with CRISPR Interference.
    Stojic L
    Methods Mol Biol; 2020; 2161():1-16. PubMed ID: 32681501
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transgenic mouse lines expressing the 3xFLAG-dCas9 protein for enChIP analysis.
    Fujita T; Kitaura F; Oji A; Tanigawa N; Yuno M; Ikawa M; Taniuchi I; Fujii H
    Genes Cells; 2018 Apr; 23(4):318-325. PubMed ID: 29480524
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Programmable CRISPR-Cas transcriptional activation in bacteria.
    Ho HI; Fang JR; Cheung J; Wang HH
    Mol Syst Biol; 2020 Jul; 16(7):e9427. PubMed ID: 32657546
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rational Design of Mini-Cas9 for Transcriptional Activation.
    Ma D; Peng S; Huang W; Cai Z; Xie Z
    ACS Synth Biol; 2018 Apr; 7(4):978-985. PubMed ID: 29562138
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit.
    Song MK; Kim YS
    Methods Mol Biol; 2024; 2761():81-91. PubMed ID: 38427231
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation.
    Raffeiner P; Hart JR; García-Caballero D; Bar-Peled L; Weinberg MS; Vogt PK
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6571-6579. PubMed ID: 32156728
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in
    Hogan AM; Rahman ASMZ; Lightly TJ; Cardona ST
    ACS Synth Biol; 2019 Oct; 8(10):2372-2384. PubMed ID: 31491085
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.
    Lowder LG; Zhang D; Baltes NJ; Paul JW; Tang X; Zheng X; Voytas DF; Hsieh TF; Zhang Y; Qi Y
    Plant Physiol; 2015 Oct; 169(2):971-85. PubMed ID: 26297141
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.
    Pham H; Kearns NA; Maehr R
    Methods Mol Biol; 2016; 1358():43-57. PubMed ID: 26463376
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators.
    Vora S; Tuttle M; Cheng J; Church G
    FEBS J; 2016 Sep; 283(17):3181-93. PubMed ID: 27248712
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gene Silencing Through CRISPR Interference in Bacteria: Current Advances and Future Prospects.
    Zhang R; Xu W; Shao S; Wang Q
    Front Microbiol; 2021; 12():635227. PubMed ID: 33868193
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels.
    Depardieu F; Bikard D
    Methods; 2020 Feb; 172():61-75. PubMed ID: 31377338
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression.
    Radzisheuskaya A; Shlyueva D; Müller I; Helin K
    Nucleic Acids Res; 2016 Oct; 44(18):e141. PubMed ID: 27353328
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis.
    Westbrook AW; Moo-Young M; Chou CP
    Appl Environ Microbiol; 2016 Aug; 82(16):4876-95. PubMed ID: 27260361
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A new method for the robust expression and single-step purification of dCas9 for CRISPR interference/activation (CRISPRi/a) applications.
    Pandey H; Yadav B; Shah K; Kaur R; Choudhary D; Sharma N; Rishi V
    Protein Expr Purif; 2024 Aug; 220():106500. PubMed ID: 38718989
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform.
    Morita S; Horii T; Kimura M; Hatada I
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32106616
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.