BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 30760617)

  • 1. Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact.
    Marton T; Feri A; Commere PH; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome.
    Feri A; Loll-Krippleber R; Commere PH; Maufrais C; Sertour N; Schwartz K; Sherlock G; Bougnoux ME; d'Enfert C; Legrand M
    mBio; 2016 Oct; 7(5):. PubMed ID: 27729506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors that influence bidirectional long-tract homozygosis due to double-strand break repair in Candida albicans.
    Marton T; Chauvel M; Feri A; Maufrais C; D'enfert C; Legrand M
    Genetics; 2021 May; 218(1):. PubMed ID: 33705548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Genome of the Human Pathogen
    Wang JM; Bennett RJ; Anderson MZ
    mBio; 2018 Sep; 9(5):. PubMed ID: 30228236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress alters rates and types of loss of heterozygosity in Candida albicans.
    Forche A; Abbey D; Pisithkul T; Weinzierl MA; Ringstrom T; Bruck D; Petersen K; Berman J
    mBio; 2011; 2(4):. PubMed ID: 21791579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans.
    Diogo D; Bouchier C; d'Enfert C; Bougnoux ME
    Fungal Genet Biol; 2009 Feb; 46(2):159-68. PubMed ID: 19059493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains.
    Forche A; Alby K; Schaefer D; Johnson AD; Berman J; Bennett RJ
    PLoS Biol; 2008 May; 6(5):e110. PubMed ID: 18462019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.
    Legrand M; Forche A; Selmecki A; Chan C; Kirkpatrick DT; Berman J
    PLoS Genet; 2008 Jan; 4(1):e1. PubMed ID: 18179283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome plasticity in
    Todd RT; Wikoff TD; Forche A; Selmecki A
    Elife; 2019 Jun; 8():. PubMed ID: 31172944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection.
    Forche A; May G; Magee PT
    Eukaryot Cell; 2005 Jan; 4(1):156-65. PubMed ID: 15643071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the major repeat sequence on mitotic recombination in Candida albicans.
    Lephart PR; Magee PT
    Genetics; 2006 Dec; 174(4):1737-44. PubMed ID: 17028326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model.
    Marton T; d'Enfert C; Legrand M
    J Fungi (Basel); 2022 Jun; 8(7):. PubMed ID: 35887406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates.
    Coste A; Selmecki A; Forche A; Diogo D; Bougnoux ME; d'Enfert C; Berman J; Sanglard D
    Eukaryot Cell; 2007 Oct; 6(10):1889-904. PubMed ID: 17693596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic Consequences of a Spontaneous Loss of Heterozygosity in a Common Laboratory Strain of Candida albicans.
    Ciudad T; Hickman M; Bellido A; Berman J; Larriba G
    Genetics; 2016 Jul; 203(3):1161-76. PubMed ID: 27206717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure.
    Muzzey D; Schwartz K; Weissman JS; Sherlock G
    Genome Biol; 2013; 14(9):R97. PubMed ID: 24025428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains.
    Abbey D; Hickman M; Gresham D; Berman J
    G3 (Bethesda); 2011 Dec; 1(7):523-30. PubMed ID: 22384363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen.
    Ene IV; Farrer RA; Hirakawa MP; Agwamba K; Cuomo CA; Bennett RJ
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8688-E8697. PubMed ID: 30150418
    [No Abstract]   [Full Text] [Related]  

  • 18. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans.
    Wu W; Pujol C; Lockhart SR; Soll DR
    Genetics; 2005 Mar; 169(3):1311-27. PubMed ID: 15654090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis.
    Lombardi L; Bergin SA; Ryan A; Zuniga-Soto E; Butler G
    mSphere; 2022 Dec; 7(6):e0039322. PubMed ID: 36416551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans.
    Coste A; Turner V; Ischer F; Morschhäuser J; Forche A; Selmecki A; Berman J; Bille J; Sanglard D
    Genetics; 2006 Apr; 172(4):2139-56. PubMed ID: 16452151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.