BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30760743)

  • 21. Differentiating intended sensory outcome from underlying motor actions in the human brain.
    Krasovsky A; Gilron R; Yeshurun Y; Mukamel R
    J Neurosci; 2014 Nov; 34(46):15446-54. PubMed ID: 25392511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How do we infer others' goals from non-stereotypic actions? The outcome of context-sensitive inferential processing in right inferior parietal and posterior temporal cortex.
    Liepelt R; Von Cramon DY; Brass M
    Neuroimage; 2008 Dec; 43(4):784-92. PubMed ID: 18773963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS.
    Bijsterbosch JD; Lee KH; Hunter MD; Tsoi DT; Lankappa S; Wilkinson ID; Barker AT; Woodruff PW
    J Cogn Neurosci; 2011 May; 23(5):1100-12. PubMed ID: 20465354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal Phase Synchronization in Adaptive Reconfiguration from Action Observation Network to Mentalizing Network for Understanding Other's Action Intention.
    Zhang L; Gan JQ; Zheng W; Wang H
    Brain Topogr; 2018 May; 31(3):447-467. PubMed ID: 29264681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TPJ-M1 interaction in the control of shared representations: New insights from tDCS and TMS combined.
    Bardi L; Gheza D; Brass M
    Neuroimage; 2017 Feb; 146():734-740. PubMed ID: 27829165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study.
    Haslinger B; Erhard P; Weilke F; Ceballos-Baumann AO; Bartenstein P; Gräfin von Einsiedel H; Schwaiger M; Conrad B; Boecker H
    Brain Res Cogn Brain Res; 2002 Apr; 13(2):159-68. PubMed ID: 11958958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oscillatory brain mechanisms of the hypnotically-induced out-of-body experience.
    Zeev-Wolf M; Dor-Ziderman Y; Goldstein A; Bonne O; Abramowitz EG
    Cortex; 2017 Nov; 96():19-30. PubMed ID: 28961523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
    Matsumoto E; Misaki M; Miyauchi S
    Exp Brain Res; 2004 Sep; 158(1):9-17. PubMed ID: 15029467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Task-specific sensory and motor preparatory activation revealed by contingent magnetic variation.
    Gómez CM; Fernández A; Maestú F; Amo C; González-Rosa JJ; Vaquero E; Ortiz T
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):59-68. PubMed ID: 15325413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple movement representations in the human brain: an event-related fMRI study.
    Toni I; Shah NJ; Fink GR; Thoenissen D; Passingham RE; Zilles K
    J Cogn Neurosci; 2002 Jul; 14(5):769-84. PubMed ID: 12167261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An online neural substrate for sense of agency.
    Chambon V; Wenke D; Fleming SM; Prinz W; Haggard P
    Cereb Cortex; 2013 May; 23(5):1031-7. PubMed ID: 22510529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A neural network elicited by parametric manipulation of the attention load.
    Mazoyer P; Wicker B; Fonlupt P
    Neuroreport; 2002 Dec; 13(17):2331-4. PubMed ID: 12488821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional connectivity alteration after real-time fMRI motor imagery training through self-regulation of activities of the right premotor cortex.
    Xie F; Xu L; Long Z; Yao L; Wu X
    BMC Neurosci; 2015 May; 16():29. PubMed ID: 25926036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of the posterior parietal cortex in human object recognition: a functional magnetic resonance imaging study.
    Sugio T; Inui T; Matsuo K; Matsuzawa M; Glover GH; Nakai T
    Neurosci Lett; 1999 Nov; 276(1):45-8. PubMed ID: 10586971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction.
    Boecker H; Ceballos-Baumann AO; Bartenstein P; Dagher A; Forster K; Haslinger B; Brooks DJ; Schwaiger M; Conrad B
    Neuroimage; 2002 Oct; 17(2):999-1009. PubMed ID: 12377173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring temporal dynamics of functional networks using phase spectrum of fMRI data.
    Sun FT; Miller LM; D'Esposito M
    Neuroimage; 2005 Oct; 28(1):227-37. PubMed ID: 16019230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements.
    Wheaton LA; Nolte G; Bohlhalter S; Fridman E; Hallett M
    Clin Neurophysiol; 2005 Jun; 116(6):1382-90. PubMed ID: 15978500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural basis of agency: an fMRI study.
    Yomogida Y; Sugiura M; Sassa Y; Wakusawa K; Sekiguchi A; Fukushima A; Takeuchi H; Horie K; Sato S; Kawashima R
    Neuroimage; 2010 Mar; 50(1):198-207. PubMed ID: 20026225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimized neural coding? Control mechanisms in large cortical networks implemented by connectivity changes.
    Cross KA; Iacoboni M
    Hum Brain Mapp; 2013 Jan; 34(1):213-25. PubMed ID: 21976418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An exploratory fMRI study into inferences of self-agency.
    Renes RA; van Haren NE; Aarts H; Vink M
    Soc Cogn Affect Neurosci; 2015 May; 10(5):708-12. PubMed ID: 25170021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.