These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30760856)
1. NMR Analysis on Molecular Interaction of Lignin with Amino Acid Residues of Carbohydrate-Binding Module from Trichoderma reesei Cel7A. Tokunaga Y; Nagata T; Suetomi T; Oshiro S; Kondo K; Katahira M; Watanabe T Sci Rep; 2019 Feb; 9(1):1977. PubMed ID: 30760856 [TBL] [Abstract][Full Text] [Related]
2. NMR elucidation of nonproductive binding sites of lignin models with carbohydrate-binding module of cellobiohydrolase I. Tokunaga Y; Nagata T; Kondo K; Katahira M; Watanabe T Biotechnol Biofuels; 2020; 13():164. PubMed ID: 33042221 [TBL] [Abstract][Full Text] [Related]
3. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Eriksson T; Karlsson J; Tjerneld F Appl Biochem Biotechnol; 2002 Apr; 101(1):41-60. PubMed ID: 12008866 [TBL] [Abstract][Full Text] [Related]
4. Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding. Rahikainen JL; Evans JD; Mikander S; Kalliola A; Puranen T; Tamminen T; Marjamaa K; Kruus K Enzyme Microb Technol; 2013 Oct; 53(5):315-21. PubMed ID: 24034430 [TBL] [Abstract][Full Text] [Related]
5. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding. Pereira A; Hoeger IC; Ferrer A; Rencoret J; Del Rio JC; Kruus K; Rahikainen J; Kellock M; Gutiérrez A; Rojas OJ Biomacromolecules; 2017 Apr; 18(4):1322-1332. PubMed ID: 28287708 [TBL] [Abstract][Full Text] [Related]
6. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin. Strobel KL; Pfeiffer KA; Blanch HW; Clark DS J Biol Chem; 2015 Sep; 290(37):22818-26. PubMed ID: 26209638 [TBL] [Abstract][Full Text] [Related]
7. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content. Martín-Sampedro R; Rahikainen JL; Johansson LS; Marjamaa K; Laine J; Kruus K; Rojas OJ Biomacromolecules; 2013 Apr; 14(4):1231-9. PubMed ID: 23484974 [TBL] [Abstract][Full Text] [Related]
8. Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement. Rabinovich ML; Melnik MS; Herner ML; Voznyi YV; Vasilchenko LG Biotechnol J; 2019 Mar; 14(3):e1700712. PubMed ID: 29781240 [TBL] [Abstract][Full Text] [Related]
9. Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Rahikainen JL; Moilanen U; Nurmi-Rantala S; Lappas A; Koivula A; Viikari L; Kruus K Bioresour Technol; 2013 Oct; 146():118-125. PubMed ID: 23920120 [TBL] [Abstract][Full Text] [Related]
10. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Payne CM; Resch MG; Chen L; Crowley MF; Himmel ME; Taylor LE; Sandgren M; Ståhlberg J; Stals I; Tan Z; Beckham GT Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14646-51. PubMed ID: 23959893 [TBL] [Abstract][Full Text] [Related]
11. Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. Beckham GT; Matthews JF; Bomble YJ; Bu L; Adney WS; Himmel ME; Nimlos MR; Crowley MF J Phys Chem B; 2010 Jan; 114(3):1447-53. PubMed ID: 20050714 [TBL] [Abstract][Full Text] [Related]
12. The impact of Trichoderma reesei Cel7A carbohydrate binding domain mutations on its binding to a cellulose surface: a molecular dynamics free energy study. Li T; Yan S; Yao L J Mol Model; 2012 Apr; 18(4):1355-64. PubMed ID: 21761177 [TBL] [Abstract][Full Text] [Related]
13. The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei. Ren M; Wang Y; Liu G; Zuo B; Zhang Y; Wang Y; Liu W; Liu X; Zhong Y J Microbiol; 2020 Aug; 58(8):687-695. PubMed ID: 32524344 [TBL] [Abstract][Full Text] [Related]
14. Lignin isolated from steam-exploded eucalyptus wood chips by phase separation and its affinity to Trichoderma reesei cellulase. Nonaka H; Kobayashi A; Funaoka M Bioresour Technol; 2013 Jul; 140():431-4. PubMed ID: 23711881 [TBL] [Abstract][Full Text] [Related]
15. Exploring how lignin structure influences the interaction between carbohydrate-binding module and lignin using AFM. Chen H; Jiang B; Zou C; Lou Z; Song J; Wu W; Jin Y Int J Biol Macromol; 2023 Mar; 232():123313. PubMed ID: 36682668 [TBL] [Abstract][Full Text] [Related]
16. Behavior of lignin-binding cellulase in the presence of fresh cellulosic substrate. Nonaka H; Kobayashi A; Funaoka M Bioresour Technol; 2013 May; 135():53-7. PubMed ID: 23186657 [TBL] [Abstract][Full Text] [Related]
17. Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Palonen H; Tjerneld F; Zacchi G; Tenkanen M J Biotechnol; 2004 Jan; 107(1):65-72. PubMed ID: 14687972 [TBL] [Abstract][Full Text] [Related]
19. The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Le Costaouëc T; Pakarinen A; Várnai A; Puranen T; Viikari L Bioresour Technol; 2013 Sep; 143():196-203. PubMed ID: 23796604 [TBL] [Abstract][Full Text] [Related]
20. Estimation of glucosamine in biomass of Trichoderma reesei cultivated on lignocellulosic substrates. Chysirichote T; Mapisansup W; Aroonsong S J Basic Microbiol; 2021 Apr; 61(4):305-314. PubMed ID: 33605476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]