BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 30761170)

  • 41. Genome-wide mining and comparative analysis of fatty acid elongase gene family in Brassica napus and its progenitors.
    Xue Y; Jiang J; Yang X; Jiang H; Du Y; Liu X; Xie R; Chai Y
    Gene; 2020 Jul; 747():144674. PubMed ID: 32304781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide analysis of glutamate receptor gene family in allopolyploid Brassica napus and its diploid progenitors.
    Roy BC; Shukla N; Gachhui R; Mukherjee A
    Genetica; 2023 Oct; 151(4-5):293-310. PubMed ID: 37624443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional and evolutionary study of MLO gene family in the regulation of Sclerotinia stem rot resistance in Brassica napus L.
    Liu J; Wu Y; Zhang X; Gill RA; Hu M; Bai Z; Zhao C; Zhang Y; Liu Y; Hu Q; Cheng X; Huang J; Liu L; Yan S; Liu S
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):86. PubMed ID: 37217949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.
    Yang J; Liu G; Zhao N; Chen S; Liu D; Ma W; Hu Z; Zhang M
    Plant Biol (Stuttg); 2016 May; 18(3):527-36. PubMed ID: 27079962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum.
    Rahman H; Xu YP; Zhang XR; Cai XZ
    Front Plant Sci; 2016; 7():581. PubMed ID: 27200054
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus.
    Zhang F; Huang J; Tang M; Cheng X; Liu Y; Tong C; Yu J; Sadia T; Dong C; Liu L; Tang B; Chen J; Liu S
    J Integr Plant Biol; 2019 Jan; 61(1):75-88. PubMed ID: 30506639
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel quantitative trait loci from an interspecific
    Raman H; Raman R; Sharma N; Cui X; McVittie B; Qiu Y; Zhang Y; Hu Q; Liu S; Gororo N
    Front Plant Sci; 2023; 14():1233996. PubMed ID: 37736615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing.
    Tollenaere R; Hayward A; Dalton-Morgan J; Campbell E; Lee JR; Lorenc MT; Manoli S; Stiller J; Raman R; Raman H; Edwards D; Batley J
    Plant Biotechnol J; 2012 Aug; 10(6):709-15. PubMed ID: 22726421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The mechanism of white flower formation in Brassica rapa is distinct from that in other Brassica species.
    Guan Z; Li X; Yang J; Zhao J; Wang K; Hu J; Zhang B; Liu K
    Theor Appl Genet; 2023 May; 136(6):133. PubMed ID: 37204504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives.
    Rana D; van den Boogaart T; O'Neill CM; Hynes L; Bent E; Macpherson L; Park JY; Lim YP; Bancroft I
    Plant J; 2004 Dec; 40(5):725-33. PubMed ID: 15546355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic asymmetry of the Brassica napus seed: epigenetic contributions of DNA methylation and small RNAs to subgenome bias.
    Ziegler DJ; Khan D; Pulgar-Vidal N; Parkin IAP; Robinson SJ; Belmonte MF
    Plant J; 2023 Aug; 115(3):690-708. PubMed ID: 37195091
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative analysis of cytokinin response factors in Brassica diploids and amphidiploids and insights into the evolution of Brassica species.
    Kong L; Zhao K; Gao Y; Miao L; Chen C; Deng H; Liu Z; Yu X
    BMC Genomics; 2018 Oct; 19(1):728. PubMed ID: 30285607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extraction of the Constituent Subgenomes of the Natural Allopolyploid Rapeseed (Brassica napus L.).
    Zhu B; Tu Y; Zeng P; Ge X; Li Z
    Genetics; 2016 Nov; 204(3):1015-1027. PubMed ID: 27638420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome.
    Clarke WE; Higgins EE; Plieske J; Wieseke R; Sidebottom C; Khedikar Y; Batley J; Edwards D; Meng J; Li R; Lawley CT; Pauquet J; Laga B; Cheung W; Iniguez-Luy F; Dyrszka E; Rae S; Stich B; Snowdon RJ; Sharpe AG; Ganal MW; Parkin IA
    Theor Appl Genet; 2016 Oct; 129(10):1887-99. PubMed ID: 27364915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.
    Cheng F; Sun R; Hou X; Zheng H; Zhang F; Zhang Y; Liu B; Liang J; Zhuang M; Liu Y; Liu D; Wang X; Li P; Liu Y; Lin K; Bucher J; Zhang N; Wang Y; Wang H; Deng J; Liao Y; Wei K; Zhang X; Fu L; Hu Y; Liu J; Cai C; Zhang S; Zhang S; Li F; Zhang H; Zhang J; Guo N; Liu Z; Liu J; Sun C; Ma Y; Zhang H; Cui Y; Freeling MR; Borm T; Bonnema G; Wu J; Wang X
    Nat Genet; 2016 Oct; 48(10):1218-24. PubMed ID: 27526322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate glucosyltransferase (UGT84A9) in oilseed rape (Brassica napus).
    Mittasch J; Mikolajewski S; Breuer F; Strack D; Milkowski C
    Theor Appl Genet; 2010 May; 120(8):1485-500. PubMed ID: 20087565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide Association Study Identifies New Loci for Resistance to Sclerotinia Stem Rot in
    Wu J; Zhao Q; Liu S; Shahid M; Lan L; Cai G; Zhang C; Fan C; Wang Y; Zhou Y
    Front Plant Sci; 2016; 7():1418. PubMed ID: 27703464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression.
    Weier D; Mittasch J; Strack D; Milkowski C
    Planta; 2008 Jan; 227(2):375-85. PubMed ID: 17882453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in
    Kopec PM; Mikolajczyk K; Jajor E; Perek A; Nowakowska J; Obermeier C; Chawla HS; Korbas M; Bartkowiak-Broda I; Karlowski WM
    Front Plant Sci; 2021; 12():639631. PubMed ID: 33936130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative Transcriptome Analysis Points to the Biological Processes of Hybrid Incompatibility between
    Yue F; Zheng F; Li Q; Mei J; Shu C; Qian W
    Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.