These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30761295)

  • 1. e-Sweet: A Machine-Learning Based Platform for the Prediction of Sweetener and Its Relative Sweetness.
    Zheng S; Chang W; Xu W; Xu Y; Lin F
    Front Chem; 2019; 7():35. PubMed ID: 30761295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods.
    Zheng S; Jiang M; Zhao C; Zhu R; Hu Z; Xu Y; Lin F
    Front Chem; 2018; 6():82. PubMed ID: 29651416
    [No Abstract]   [Full Text] [Related]  

  • 3. A novel multi-layer prediction approach for sweetness evaluation based on systematic machine learning modeling.
    Yang ZF; Xiao R; Xiong GL; Lin QL; Liang Y; Zeng WB; Dong J; Cao DS
    Food Chem; 2022 Mar; 372():131249. PubMed ID: 34634587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Psychophysical Dose-Response Behaviour across 16 Sweeteners.
    Wee M; Tan V; Forde C
    Nutrients; 2018 Nov; 10(11):. PubMed ID: 30400167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory characteristics and relative sweetness of tagatose and other sweeteners.
    Fujimaru T; Park JH; Lim J
    J Food Sci; 2012 Sep; 77(9):S323-8. PubMed ID: 22908895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Informed classification of sweeteners/bitterants compounds via explainable machine learning.
    Maroni G; Pallante L; Di Benedetto G; Deriu MA; Piga D; Grasso G
    Curr Res Food Sci; 2022; 5():2270-2280. PubMed ID: 36439645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BoostSweet: Learning molecular perceptual representations of sweeteners.
    Lee J; Song SB; Chung YK; Jang JH; Huh J
    Food Chem; 2022 Jul; 383():132435. PubMed ID: 35182866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning models to predict sweetness of molecules.
    Goel M; Sharma A; Chilwal AS; Kumari S; Kumar A; Bagler G
    Comput Biol Med; 2023 Jan; 152():106441. PubMed ID: 36543004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BitterSweetForest: A Random Forest Based Binary Classifier to Predict Bitterness and Sweetness of Chemical Compounds.
    Banerjee P; Preissner R
    Front Chem; 2018; 6():93. PubMed ID: 29696137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of sweetness sensation.
    DuBois GE
    Physiol Behav; 2016 Oct; 164(Pt B):453-463. PubMed ID: 26992959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the response of the sweet taste receptor, salivation toward sweeteners, and sweetness intensity.
    Kusakabe Y; Shindo Y; Kawai T; Maeda-Yamamoto M; Wada Y
    Food Sci Nutr; 2021 Feb; 9(2):719-727. PubMed ID: 33598157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-caloric sweeteners, sweetness modulators, and sweetener enhancers.
    DuBois GE; Prakash I
    Annu Rev Food Sci Technol; 2012; 3():353-80. PubMed ID: 22224551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A QSTR-Based Expert System to Predict Sweetness of Molecules.
    Rojas C; Todeschini R; Ballabio D; Mauri A; Consonni V; Tripaldi P; Grisoni F
    Front Chem; 2017; 5():53. PubMed ID: 28791285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of frequency of consumption of artificial sweeteners on sweetness liking by women.
    Mahar A; Duizer LM
    J Food Sci; 2007 Nov; 72(9):S714-8. PubMed ID: 18034758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-intensity profile of pitanga nectar (Eugenia uniflora L.) with different sweeteners: Sweetness and bitterness.
    Freitas ML; de Lima Dutra MB; Bolini HM
    Food Sci Technol Int; 2016 Jan; 22(1):58-67. PubMed ID: 25627677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-All-That-Apply (RATA) comparison of taste profiles for different sweeteners in black tea, chocolate milk, and natural yogurt.
    Tan VWK; Wee MSM; Tomic O; Forde CG
    J Food Sci; 2020 Feb; 85(2):486-492. PubMed ID: 31968393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psychophysical Evaluation of Sweetness Functions Across Multiple Sweeteners.
    Low JY; McBride RL; Lacy KE; Keast RS
    Chem Senses; 2017 Feb; 42(2):111-120. PubMed ID: 27765786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the interactions between natural, non-caloric sweeteners and the human sweet receptor by molecular docking.
    Acevedo W; Ramírez-Sarmiento CA; Agosin E
    Food Chem; 2018 Oct; 264():164-171. PubMed ID: 29853362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of sweetness by multilinear regression analysis and support vector machine.
    Zhong M; Chong Y; Nie X; Yan A; Yuan Q
    J Food Sci; 2013 Sep; 78(9):S1445-50. PubMed ID: 23915005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of repeated presentation on sweetness intensity of binary and ternary mixtures of sweeteners.
    Schiffman SS; Sattely-Miller EA; Graham BG; Zervakis J; Butchko HH; Stargel WW
    Chem Senses; 2003 Mar; 28(3):219-29. PubMed ID: 12714444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.