These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30761433)

  • 1. Asynchronous Adaptive Threshold Level Crossing ADC for Wearable ECG Sensors.
    Antony A; Paulson SR; Moni DJ
    J Med Syst; 2019 Feb; 43(3):78. PubMed ID: 30761433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A level-crossing based QRS-detection algorithm for wearable ECG sensors.
    Ravanshad N; Rezaee-Dehsorkh H; Lotfi R; Lian Y
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):183-92. PubMed ID: 24403416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sub-microwatt asynchronous level-crossing ADC for biomedical applications.
    Li Y; Zhao D; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):149-57. PubMed ID: 23853297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ECG recording front-end with continuous-time level-crossing sampling.
    Li Y; Mansano AL; Yuan Y; Zhao D; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):626-35. PubMed ID: 25330494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 2.64- μW 71-dB SNDR Discrete-Time Signal-Folding Amplifier for Reducing ADC's Resolution Requirement in Wearable ECG Acquisition Systems.
    Ratametha C; Tepwimonpetkun S; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):48-64. PubMed ID: 31796416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors.
    Zhang X; Lian Y
    IEEE Trans Biomed Circuits Syst; 2014 Dec; 8(6):834-43. PubMed ID: 25608283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low power level-crossing ADC for wearable wireless ECG sensors.
    Zhenzhen Tian ; Rendong Ying ; Peilin Liu ; Guoxing Wang ; Yong Lian
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3543-3546. PubMed ID: 28269063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wavelet Adaptive Cancellation Algorithm Based on Multi-Inertial Sensors for the Reduction of Motion Artifacts in Ambulatory ECGs.
    Xiong F; Chen D; Huang M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32054066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low-power asynchronous ECG acquisition system in CMOS technology.
    Hwang S; Trakimas M; Sonkusale S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5262-5. PubMed ID: 21096052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of wavelet-based ECG detector for implantable cardiac pacemakers.
    Min YJ; Kim HK; Kang YR; Kim GS; Park J; Kim SW
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):426-36. PubMed ID: 23893202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring.
    Liu X; Zheng Y; Phyu MW; Zhao B; Je M; Yuan X
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):380-9. PubMed ID: 20679025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ECG Delineation and Arrhythmia Classification System Using Slope Variation Measurement by Ternary Second-Order Delta Modulators for Wearable ECG Sensors.
    Tang X; Tang W
    IEEE Trans Biomed Circuits Syst; 2021 Oct; 15(5):1053-1065. PubMed ID: 34543204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A joint QRS detection and data compression scheme for wearable sensors.
    Deepu CJ; Lian Y
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):165-75. PubMed ID: 25073164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition.
    Marisa T; Niederhauser T; Haeberlin A; Wildhaber RA; Vogel R; Goette J; Jacomet M
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):267-278. PubMed ID: 28186908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Micropower Motion Artifact Estimator for Input Dynamic Range Reduction in Wearable ECG Acquisition Systems.
    Pholpoke B; Songthawornpong T; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1021-1035. PubMed ID: 31478870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Time Level Crossing Sampling ADC for Bio-Potential Recording Systems.
    Tang W; Osman A; Kim D; Goldstein B; Huang C; Martini B; Pieribone VA; Culurciello E
    IEEE Trans Circuits Syst I Regul Pap; 2013 Jun; 60(6):1407-1418. PubMed ID: 24163640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors.
    Zhao Y; Shang Z; Lian Y
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):918-926. PubMed ID: 31247560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Wearable Device for Continuous Ambulatory ECG Recording: Proof of Concept and Assessment of Signal Quality.
    Steinberg C; Philippon F; Sanchez M; Fortier-Poisson P; O'Hara G; Molin F; Sarrazin JF; Nault I; Blier L; Roy K; Plourde B; Champagne J
    Biosensors (Basel); 2019 Jan; 9(1):. PubMed ID: 30669678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System.
    Wang LH; Zhang W; Guan MH; Jiang SY; Fan MH; Abu PAR; Chen CA; Chen SL
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.