These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 30762035)

  • 1. Molecular insight into chymotrypsin inhibitor 2 resisting proteolytic degradation.
    Wei W; Chen Y; Xie D; Zhou Y
    Phys Chem Chem Phys; 2019 Feb; 21(9):5049-5058. PubMed ID: 30762035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding, proteolytic, and crystallographic analyses of mutations at the protease-inhibitor interface of the subtilisin BPN'/chymotrypsin inhibitor 2 complex.
    Radisky ES; Kwan G; Karen Lu CJ; Koshland DE
    Biochemistry; 2004 Nov; 43(43):13648-56. PubMed ID: 15504027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amide Rotation Hindrance Predicts Proteolytic Resistance of Cystine-Knot Peptides.
    Zhou Y; Xie D; Zhang Y
    J Phys Chem Lett; 2016 Apr; 7(7):1138-42. PubMed ID: 26958702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic core mutations in CI2 globally perturb fast side-chain dynamics similarly without regard to position.
    Whitley MJ; Zhang J; Lee AL
    Biochemistry; 2008 Aug; 47(33):8566-76. PubMed ID: 18656953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the protein core in the inhibitory power of the classic serine protease inhibitor, chymotrypsin inhibitor 2.
    Radisky ES; King DS; Kwan G; Koshland DE
    Biochemistry; 2003 Jun; 42(21):6484-92. PubMed ID: 12767231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct comparison of experimental and calculated folding free energies for hydrophobic deletion mutants of chymotrypsin inhibitor 2: free energy perturbation calculations using transition and denatured states from molecular dynamics simulations of unfolding.
    Pan Y; Daggett V
    Biochemistry; 2001 Mar; 40(9):2723-31. PubMed ID: 11258883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Chymotrypsin Inhibitor 2 by Optimizing Non-Native Interactions.
    B da Silva F; M de Oliveira V; Sanches MN; Contessoto VG; Leite VBP
    J Chem Inf Model; 2020 Feb; 60(2):982-988. PubMed ID: 31794216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Mutant of Chymotrypsin Inhibitor 2 Stabilized through Increased Conformational Entropy.
    Gavrilov Y; Kümmerer F; Orioli S; Prestel A; Lindorff-Larsen K; Teilum K
    Biochemistry; 2022 Feb; 61(3):160-170. PubMed ID: 35019273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the intramolecular hydrogen bond network in the inhibitory power of chymotrypsin inhibitor 2.
    Radisky ES; Lu CJ; Kwan G; Koshland DE
    Biochemistry; 2005 May; 44(18):6823-30. PubMed ID: 15865427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus.
    Otzen DE; Fersht AR
    Biochemistry; 1998 Jun; 37(22):8139-46. PubMed ID: 9609709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone dynamics of chymotrypsin inhibitor 2: effect of breaking the active site bond and its implications for the mechanism of inhibition of serine proteases.
    Shaw GL; Davis B; Keeler J; Fersht AR
    Biochemistry; 1995 Feb; 34(7):2225-33. PubMed ID: 7857934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratcheted molecular-dynamics simulations identify efficiently the transition state of protein folding.
    Tiana G; Camilloni C
    J Chem Phys; 2012 Dec; 137(23):235101. PubMed ID: 23267502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational dynamics of subtilisin-chymotrypsin inhibitor 2 complex by coarse-grained simulations.
    Kurt N; Haliloğlu T
    J Biomol Struct Dyn; 2001 Apr; 18(5):713-31. PubMed ID: 11334109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redesigning the reactive site loop of the wheat subtilisin/chymotrypsin inhibitor (WSCI) by site-directed mutagenesis. A protein-protein interaction study by affinity chromatography and molecular modeling.
    Bruni N; Di Maro A; Costantini S; Chambery A; Facchiano AM; Ficca AG; Parente A; Poerio E
    Biochimie; 2009 Sep; 91(9):1112-22. PubMed ID: 19500644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS; Otzen DE; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):260-88. PubMed ID: 7490748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations.
    Li A; Daggett V
    J Mol Biol; 1996 Mar; 257(2):412-29. PubMed ID: 8609633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.
    Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G
    Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site dynamics of acyl-chymotrypsin.
    Nakagawa S; Yu HA; Karplus M; Umeyama H
    Proteins; 1993 Jun; 16(2):172-94. PubMed ID: 8332606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The affect of urea on the kinetics of local unfolding processes in chymotrypsin inhibitor 2.
    Lindgren M; Westlund PO
    Biophys Chem; 2010 Sep; 151(1-2):46-53. PubMed ID: 20570033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.