These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 30762134)
1. Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels. Flora T; de Torre IG; Alonso M; Rodríguez-Cabello JC J Mater Sci Mater Med; 2019 Feb; 30(2):30. PubMed ID: 30762134 [TBL] [Abstract][Full Text] [Related]
2. Combining tunable proteolytic sequences and a VEGF-mimetic peptide for the spatiotemporal control of angiogenesis within Elastin-Like Recombinamer scaffolds. González-Pérez F; Ibáñez-Fonseca A; Alonso M; Rodríguez-Cabello JC Acta Biomater; 2021 Aug; 130():149-160. PubMed ID: 34118450 [TBL] [Abstract][Full Text] [Related]
3. Poly(N-isopropylacrylamide)-based dual-crosslinking biohybrid injectable hydrogels for vascularization. Pal A; Smith CI; Palade J; Nagaraju S; Alarcon-Benedetto BA; Kilbourne J; Rawls A; Wilson-Rawls J; Vernon BL; Nikkhah M Acta Biomater; 2020 Apr; 107():138-151. PubMed ID: 32126310 [TBL] [Abstract][Full Text] [Related]
4. Protease-Sensitive, VEGF-Mimetic Peptide, and IKVAV Laminin-Derived Peptide Sequences within Elastin-Like Recombinamer Scaffolds Provide Spatiotemporally Synchronized Guidance of Angiogenesis and Neurogenesis. González-Pérez F; Alonso M; González de Torre I; Santos M; Rodríguez-Cabello JC Adv Healthc Mater; 2022 Nov; 11(22):e2201646. PubMed ID: 36099430 [TBL] [Abstract][Full Text] [Related]
5. Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Staubli SM; Cerino G; Gonzalez De Torre I; Alonso M; Oertli D; Eckstein F; Glatz K; Rodríguez Cabello JC; Marsano A Biomaterials; 2017 Aug; 135():30-41. PubMed ID: 28482232 [TBL] [Abstract][Full Text] [Related]
6. Designing and synthesis of injectable hydrogel based on carboxymethyl cellulose/carboxymethyl chitosan containing QK peptide for femoral head osteonecrosis healing. Peyravian N; Milan PB; Kebria MM; Mashayekhan S; Ghasemian M; Amiri S; Hamidi M; Shavandi A; Moghtadaei M Int J Biol Macromol; 2024 Jun; 270(Pt 1):132127. PubMed ID: 38718991 [TBL] [Abstract][Full Text] [Related]
7. Functional characterization of an enzymatically degradable multi-bioactive elastin-like recombinamer. Girotti A; Gonzalez-Valdivieso J; Santos M; Martin L; Arias FJ Int J Biol Macromol; 2020 Dec; 164():1640-1648. PubMed ID: 32758602 [TBL] [Abstract][Full Text] [Related]
8. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine. Ibáñez-Fonseca A; Ramos TL; González de Torre I; Sánchez-Abarca LI; Muntión S; Arias FJ; Del Cañizo MC; Alonso M; Sánchez-Guijo F; Rodríguez-Cabello JC J Tissue Eng Regen Med; 2018 Mar; 12(3):e1450-e1460. PubMed ID: 28865091 [TBL] [Abstract][Full Text] [Related]
9. Injectable hydrogel encapsulated with VEGF-mimetic peptide-loaded nanoliposomes promotes peripheral nerve repair in vivo. Xu W; Wu Y; Lu H; Zhang X; Zhu Y; Liu S; Zhang Z; Ye J; Yang W Acta Biomater; 2023 Apr; 160():225-238. PubMed ID: 36774975 [TBL] [Abstract][Full Text] [Related]
11. Anti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. Perugini V; Guildford AL; Silva-Correia J; Oliveira JM; Meikle ST; Reis RL; Santin M J Tissue Eng Regen Med; 2018 Feb; 12(2):e669-e678. PubMed ID: 27718530 [TBL] [Abstract][Full Text] [Related]
12. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Park KM; Lee Y; Son JY; Bae JW; Park KD Bioconjug Chem; 2012 Oct; 23(10):2042-50. PubMed ID: 22998168 [TBL] [Abstract][Full Text] [Related]
13. Temporally tunable, enzymatically responsive delivery of proangiogenic peptides from poly(ethylene glycol) hydrogels. Van Hove AH; Antonienko E; Burke K; Brown E; Benoit DS Adv Healthc Mater; 2015 Sep; 4(13):2002-11. PubMed ID: 26149620 [TBL] [Abstract][Full Text] [Related]
14. Boosting angiogenesis and functional vascularization in injectable dextran-hyaluronic acid hydrogels by endothelial-like mesenchymal stromal cells. Portalska KJ; Teixeira LM; Leijten JC; Jin R; van Blitterswijk C; de Boer J; Karperien M Tissue Eng Part A; 2014 Feb; 20(3-4):819-29. PubMed ID: 24070233 [TBL] [Abstract][Full Text] [Related]
15. Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro. Ramirez-Calderon G; Susapto HH; Hauser CAE ACS Appl Mater Interfaces; 2021 Jun; 13(25):29281-29292. PubMed ID: 34142544 [TBL] [Abstract][Full Text] [Related]
16. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. García JR; Clark AY; García AJ J Biomed Mater Res A; 2016 Apr; 104(4):889-900. PubMed ID: 26662727 [TBL] [Abstract][Full Text] [Related]
17. One-pot Synthesis of Elastin-like Polypeptide Hydrogels with Grafted VEGF-Mimetic Peptides. Cai L; Dinh CB; Heilshorn SC Biomater Sci; 2014 May; 2(5):757-765. PubMed ID: 24729868 [TBL] [Abstract][Full Text] [Related]
18. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Leslie-Barbick JE; Saik JE; Gould DJ; Dickinson ME; West JL Biomaterials; 2011 Sep; 32(25):5782-9. PubMed ID: 21612821 [TBL] [Abstract][Full Text] [Related]
19. In vivo properties of the proangiogenic peptide QK. Santulli G; Ciccarelli M; Palumbo G; Campanile A; Galasso G; Ziaco B; Altobelli GG; Cimini V; Piscione F; D'Andrea LD; Pedone C; Trimarco B; Iaccarino G J Transl Med; 2009 Jun; 7():41. PubMed ID: 19505323 [TBL] [Abstract][Full Text] [Related]