BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30762180)

  • 1. Long-term responses of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) to the contamination of light soils with diesel oil.
    Bęś A; Warmiński K; Adomas B
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10587-10608. PubMed ID: 30762180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace element contamination differentiates the natural population of Scots pine: evidence from DNA microsatellites and needle morphology.
    Chudzińska E; Celiński K; Pawlaczyk EM; Wojnicka-Półtorak A; Diatta JB
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22151-22162. PubMed ID: 27544527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland.
    Picon-Cochard C; Coll L; Balandier P
    Oecologia; 2006 Jun; 148(3):373-83. PubMed ID: 16489460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mining area and in a Calluna site in Estonia.
    Kuznetsova T; Mandre M; Klõseiko J; Pärn H
    Environ Monit Assess; 2010 Jul; 166(1-4):257-65. PubMed ID: 19472062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment.
    Kosiorek M; Modrzewska B; Wyszkowski M
    Environ Monit Assess; 2016 Oct; 188(10):598. PubMed ID: 27696092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First evidence of nanoparticle uptake through leaves and roots in beech (Fagus sylvatica L.) and pine (Pinus sylvestris L.).
    Ballikaya P; Brunner I; Cocozza C; Grolimund D; Kaegi R; Murazzi ME; Schaub M; Schönbeck LC; Sinnet B; Cherubini P
    Tree Physiol; 2023 Feb; 43(2):262-276. PubMed ID: 36226588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Six-year time course of light-use efficiency, carbon gain and growth of beech saplings (Fagus sylvatica) planted under a Scots pine (Pinus sylvestris) shelterwood.
    Balandier P; Sinoquet H; Frak E; Giuliani R; Vandame M; Descamps S; Coll L; Adam B; Prevosto B; Curt T
    Tree Physiol; 2007 Aug; 27(8):1073-82. PubMed ID: 17472934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ENSO and NAO affect long-term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods.
    González de Andrés E; Blanco JA; Imbert JB; Guan BT; Lo YH; Castillo FJ
    Glob Chang Biol; 2019 Sep; 25(9):3070-3090. PubMed ID: 31038783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and physiological responses of beech (Fagus sylvatica) seedlings to grass-induced below ground competition.
    Coll L; Balandier P; Picon-Cochard C
    Tree Physiol; 2004 Jan; 24(1):45-54. PubMed ID: 14652213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stochastic model of tree architecture and biomass partitioning: application to Mongolian Scots pines.
    Wang F; Kang M; Lu Q; Letort V; Han H; Guo Y; de Reffye P; Li B
    Ann Bot; 2011 Apr; 107(5):781-92. PubMed ID: 21062760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings.
    Trocha LK; Weiser E; Robakowski P
    Mycorrhiza; 2016 Jan; 26(1):47-56. PubMed ID: 26003665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron and manganese migration in "soil-plant" system in Scots pine stands in conditions of contamination by the steel plant's emissions.
    Zaitsev GA; Dubrovina OA; Shainurov RI
    Sci Rep; 2020 Jul; 10(1):11025. PubMed ID: 32620934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season.
    Domisch T; Finér L; Lehto T
    Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS).
    Girona-García A; Badía-Villas D; Jiménez-Morillo NT; González-Pérez JA
    Sci Total Environ; 2019 Nov; 691():1155-1161. PubMed ID: 31466197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of substrate compaction and chemical composition in the phytoextraction of elements by Pinus sylvestris L.
    Mleczek M; Goliński P; Waliszewska B; Mocek A; Gąsecka M; Zborowska M; Magdziak Z; Cichy WJ; Mazela B; Kozubik T; Mocek-Płóciniak A; Moliński W; Niedzielski P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):1029-1038. PubMed ID: 29775396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Canavalia ensiformis in soil contaminated with diesel oil.
    Balliana AG; Moura BB; Inckot RC; Bona C
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):979-986. PubMed ID: 27761870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species.
    Opgenoorth L; Dauphin B; Benavides R; Heer K; Alizoti P; Martínez-Sancho E; Alía R; Ambrosio O; Audrey A; Auñón F; Avanzi C; Avramidou E; Bagnoli F; Barbas E; Bastias CC; Bastien C; Ballesteros E; Beffa G; Bernier F; Bignalet H; Bodineau G; Bouic D; Brodbeck S; Brunetto W; Buchovska J; Buy M; Cabanillas-Saldaña AM; Carvalho B; Cheval N; Climent JM; Correard M; Cremer E; Danusevičius D; Del Caño F; Denou JL; di Gerardi N; Dokhelar B; Ducousso A; Eskild Nilsen A; Farsakoglou AM; Fonti P; Ganopoulos I; García Del Barrio JM; Gilg O; González-Martínez SC; Graf R; Gray A; Grivet D; Gugerli F; Hartleitner C; Hollenbach E; Hurel A; Issehut B; Jean F; Jorge V; Jouineau A; Kappner JP; Kärkkäinen K; Kesälahti R; Knutzen F; Kujala ST; Kumpula TA; Labriola M; Lalanne C; Lambertz J; Lascoux M; Lejeune V; Le-Provost G; Levillain J; Liesebach M; López-Quiroga D; Meier B; Malliarou E; Marchon J; Mariotte N; Mas A; Matesanz S; Meischner H; Michotey C; Milesi P; Morganti S; Nievergelt D; Notivol E; Ostreng G; Pakull B; Perry A; Piotti A; Plomion C; Poinot N; Pringarbe M; Puzos L; Pyhäjärvi T; Raffin A; Ramírez-Valiente JA; Rellstab C; Remi D; Richter S; Robledo-Arnuncio JJ; San Segundo S; Savolainen O; Schueler S; Schneck V; Scotti I; Semerikov V; Slámová L; Sønstebø JH; Spanu I; Thevenet J; Tollefsrud MM; Turion N; Vendramin GG; Villar M; von Arx G; Westin J; Fady B; Myking T; Valladares F; Aravanopoulos FA; Cavers S
    Gigascience; 2021 Mar; 10(3):. PubMed ID: 33734368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seed germination and seedling growth of Scots pine in technogenically polluted soils as container media.
    Makhniova S; Mohnachev P; Ayan S
    Environ Monit Assess; 2019 Jan; 191(2):113. PubMed ID: 30693379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water availability influences morphology, mycorrhizal associations, PSII efficiency and polyamine metabolism at early growth phase of Scots pine seedlings.
    Muilu-Mäkelä R; Vuosku J; Läärä E; Saarinen M; Heiskanen J; Häggman H; Sarjala T
    Plant Physiol Biochem; 2015 Mar; 88():70-81. PubMed ID: 25666263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.
    Kuznetsova T; Tilk M; Pärn H; Lukjanova A; Mandre M
    Environ Monit Assess; 2011 Dec; 183(1-4):341-50. PubMed ID: 21374054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.