BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 30762338)

  • 1. Network-Based Combinatorial CRISPR-Cas9 Screens Identify Synergistic Modules in Human Cells.
    Guo Y; Bao C; Ma D; Cao Y; Li Y; Xie Z; Li S
    ACS Synth Biol; 2019 Mar; 8(3):482-490. PubMed ID: 30762338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering Tumorigenesis Circuitry with Combinatorial CRISPR.
    Fong SH; Munson BP; Ideker T
    Cancer Res; 2021 Dec; 81(24):6078-6079. PubMed ID: 34911780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of CRISPR-Cas9 for Long Noncoding RNA Genes in Cancer Research.
    Zhen S; Li X
    Hum Gene Ther; 2019 Jan; 30(1):3-9. PubMed ID: 30045635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Editing to Facilitate and Expand Drug Discovery.
    Robert F; Huang S; Pelletier J
    Curr Gene Ther; 2017; 17(4):275-285. PubMed ID: 29173168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic identification of core transcription factors mediating dysregulated links bridging inflammatory bowel diseases and colorectal cancer.
    Xiao Y; Fan H; Zhang Y; Xing W; Ping Y; Zhao H; Xu C; Li Y; Wang L; Li F; Hu J; Huang T; Lv Y; Ren H; Li X
    PLoS One; 2013; 8(12):e83495. PubMed ID: 24386215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Functional Modules of Liver Cancer Based on Differential Network Analysis.
    Hu B; Chang X; Liu X
    Interdiscip Sci; 2019 Dec; 11(4):636-644. PubMed ID: 30603844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 for cancer research and therapy.
    Zhan T; Rindtorff N; Betge J; Ebert MP; Boutros M
    Semin Cancer Biol; 2019 Apr; 55():106-119. PubMed ID: 29673923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9.
    Shen H; McHale CM; Smith MT; Zhang L
    Mutat Res Rev Mutat Res; 2015; 764():31-42. PubMed ID: 26041264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.
    Li W; Xu H; Xiao T; Cong L; Love MI; Zhang F; Irizarry RA; Liu JS; Brown M; Liu XS
    Genome Biol; 2014; 15(12):554. PubMed ID: 25476604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimized combinatorial CRISPR screens identify genetic interactions in autophagy.
    Diehl V; Wegner M; Grumati P; Husnjak K; Schaubeck S; Gubas A; Shah VJ; Polat IH; Langschied F; Prieto-Garcia C; Müller K; Kalousi A; Ebersberger I; Brandts CH; Dikic I; Kaulich M
    Nucleic Acids Res; 2021 Jun; 49(10):5684-5704. PubMed ID: 33956155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial CRISPR/Cas9 Screening Reveals Epistatic Networks of Interacting Tumor Suppressor Genes and Therapeutic Targets in Human Breast Cancer.
    Zhao X; Li J; Liu Z; Powers S
    Cancer Res; 2021 Dec; 81(24):6090-6105. PubMed ID: 34561273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of disrupted pathways in ulcerative colitis-related colorectal carcinoma by systematic tracking the dysregulated modules.
    Wu D; Li Q; Song G; Lu J
    J BUON; 2016; 21(2):366-74. PubMed ID: 27273946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 Screening of Kaposi's Sarcoma-Associated Herpesvirus-Transformed Cells Identifies XPO1 as a Vulnerable Target of Cancer Cells.
    Gruffaz M; Yuan H; Meng W; Liu H; Bae S; Kim JS; Lu C; Huang Y; Gao SJ
    mBio; 2019 May; 10(3):. PubMed ID: 31088931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing.
    Atanes P; Ruz-Maldonado I; Hawkes R; Liu B; Persaud SJ; Amisten S
    Cell Physiol Biochem; 2018; 45(2):656-666. PubMed ID: 29408822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting.
    Iorio F; Behan FM; Gonçalves E; Bhosle SG; Chen E; Shepherd R; Beaver C; Ansari R; Pooley R; Wilkinson P; Harper S; Butler AP; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    BMC Genomics; 2018 Aug; 19(1):604. PubMed ID: 30103702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.