These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 30762346)
21. Initial colloid deposition on bare and zeolite-coated stainless steel and aluminum: influence of surface roughness. Chen G; Bedi RS; Yan YS; Walker SL Langmuir; 2010 Aug; 26(15):12605-13. PubMed ID: 20590135 [TBL] [Abstract][Full Text] [Related]
22. Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media. Shen C; Zhang M; Zhang S; Wang Z; Zhang H; Li B; Huang Y J Hazard Mater; 2015 Jun; 290():60-8. PubMed ID: 25746565 [TBL] [Abstract][Full Text] [Related]
23. Surface Roughness Impacts on Granular Media Filtration at Favorable Deposition Conditions: Experiments and Modeling. Jin C; Normani SD; Emelko MB Environ Sci Technol; 2015 Jul; 49(13):7879-88. PubMed ID: 26053116 [TBL] [Abstract][Full Text] [Related]
24. Favorable and unfavorable attachment of colloids in a discrete sandstone fracture. Spanik S; Rrokaj E; Mondal PK; Sleep BE J Contam Hydrol; 2021 Dec; 243():103919. PubMed ID: 34763243 [TBL] [Abstract][Full Text] [Related]
25. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions. Jin C; Ren CL; Emelko MB Environ Sci Technol; 2016 Apr; 50(8):4401-12. PubMed ID: 27007293 [TBL] [Abstract][Full Text] [Related]
26. An explanation for differences in the process of colloid adsorption in batch and column studies. Treumann S; Torkzaban S; Bradford SA; Visalakshan RM; Page D J Contam Hydrol; 2014 Aug; 164():219-29. PubMed ID: 24997430 [TBL] [Abstract][Full Text] [Related]
27. Important Role of Concave Surfaces in Deposition of Colloids under Favorable Conditions as Revealed by Microscale Visualization. Li T; Shen C; Johnson WP; Ma H; Jin C; Zhang C; Chu X; Ma K; Xing B Environ Sci Technol; 2022 Apr; 56(7):4121-4131. PubMed ID: 35312300 [TBL] [Abstract][Full Text] [Related]
28. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Ma H; Pazmino E; Johnson WP Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388 [TBL] [Abstract][Full Text] [Related]
29. Particle tracking model for colloid transport near planar surfaces covered with spherical asperities. Kemps JA; Bhattacharjee S Langmuir; 2009 Jun; 25(12):6887-97. PubMed ID: 19505160 [TBL] [Abstract][Full Text] [Related]
31. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Bradford SA; Torkzaban S; Shapiro A Langmuir; 2013 Jun; 29(23):6944-52. PubMed ID: 23687981 [TBL] [Abstract][Full Text] [Related]
32. Colloid Interaction Energies for Surfaces with Steric Effects and Incompressible and/or Compressible Roughness. Bradford SA; Sasidharan S; Kim H; Gomez-Flores A; Li T; Shen C Langmuir; 2021 Feb; 37(4):1501-1510. PubMed ID: 33470105 [TBL] [Abstract][Full Text] [Related]
33. Quantitative Linking of Nanoscale Interactions to Continuum-Scale Nanoparticle and Microplastic Transport in Environmental Granular Media. Johnson WP Environ Sci Technol; 2020 Jul; 54(13):8032-8042. PubMed ID: 32459088 [TBL] [Abstract][Full Text] [Related]
34. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions. Laganapan AM; Mouas M; Videcoq A; Cerbelaud M; Bienia M; Bowen P; Ferrando R J Colloid Interface Sci; 2015 Nov; 458():241-6. PubMed ID: 26232284 [TBL] [Abstract][Full Text] [Related]
35. Solid-solid contacts due to surface roughness and their effects on suspension behaviour. Davis RH; Zhao Y; Galvin KP; Wilson HJ Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):871-94. PubMed ID: 12804219 [TBL] [Abstract][Full Text] [Related]
36. Settling of a charged hydrophobic rigid colloid in aqueous media under generalized gravitational field. Kundu D; Bhattacharyya S; Gopmandal PP; Ohshima H Electrophoresis; 2021 Apr; 42(7-8):1010-1020. PubMed ID: 33159354 [TBL] [Abstract][Full Text] [Related]
37. Observed and simulated fluid drag effects on colloid deposition in the presence of an energy barrier in an impinging jet system. Johnson WP; Tong M Environ Sci Technol; 2006 Aug; 40(16):5015-21. PubMed ID: 16955901 [TBL] [Abstract][Full Text] [Related]
38. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization. Li Z; Zhang D; Li X Environ Sci Technol; 2010 Feb; 44(4):1274-80. PubMed ID: 20088544 [TBL] [Abstract][Full Text] [Related]
39. Colloid interaction energies for physically and chemically heterogeneous porous media. Bradford SA; Torkzaban S Langmuir; 2013 Mar; 29(11):3668-76. PubMed ID: 23437902 [TBL] [Abstract][Full Text] [Related]
40. Micro- and nanoplastics retention in porous media exhibits different dependence on grain surface roughness and clay coating with particle size. Liang Y; Luo Y; Shen C; Bradford SA Water Res; 2022 Aug; 221():118717. PubMed ID: 35749921 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]