These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 30762523)
1. Numerical Study of Enhancement of Positive Dielectrophoresis Particle Trapping in Electrode-Multilayered Microfluidic Device. Sato N; Yao J; Kawashima D; Takei M IEEE Trans Biomed Eng; 2019 Oct; 66(10):2936-2944. PubMed ID: 30762523 [TBL] [Abstract][Full Text] [Related]
2. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device. Sato N; Yao J; Sugawara M; Takei M IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454 [TBL] [Abstract][Full Text] [Related]
3. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping. Heida T Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336 [TBL] [Abstract][Full Text] [Related]
4. Electrothermal pumping with interdigitated electrodes and resistive heaters. Williams SJ; Green NG Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255 [TBL] [Abstract][Full Text] [Related]
6. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity. Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic-based hydrodynamic trap for single particles. Johnson-Chavarria EM; Tanyeri M; Schroeder CM J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467 [TBL] [Abstract][Full Text] [Related]
8. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Sridharan S; Zhu J; Hu G; Xuan X Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988 [TBL] [Abstract][Full Text] [Related]
9. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Chu H; Doh I; Cho YH Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018 [TBL] [Abstract][Full Text] [Related]
10. A new design for efficient dielectrophoretic separation of cells in a microdevice. Jubery TZ; Dutta P Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020 [TBL] [Abstract][Full Text] [Related]
11. Distinct Motion of GFP-Tagged Histone Expressing Cells Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device. Yao J; Sugawara M; Obara H; Mizutani T; Takei M IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1450-1458. PubMed ID: 28809711 [TBL] [Abstract][Full Text] [Related]
12. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Jia Y; Ren Y; Jiang H Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351 [TBL] [Abstract][Full Text] [Related]
13. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes. Gwon HR; Chang ST; Choi CK; Jung JY; Kim JM; Lee SH Electrophoresis; 2014 Jul; 35(14):2014-21. PubMed ID: 24737601 [TBL] [Abstract][Full Text] [Related]
14. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. Jang LS; Huang PH; Lan KC Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991 [TBL] [Abstract][Full Text] [Related]
15. Measurement of the real part of the Clausius-Mossotti factor of dielectrophoresis for Brownian particles. Lo YJ; Lei U Electrophoresis; 2020 Jan; 41(1-2):137-147. PubMed ID: 31661554 [TBL] [Abstract][Full Text] [Related]
16. Insulator-based dielectrophoretic single particle and single cancer cell trapping. Bhattacharya S; Chao TC; Ros A Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497 [TBL] [Abstract][Full Text] [Related]
17. Scaling law analysis of electrohydrodynamics and dielectrophoresis for isomotive dielectrophoresis microfluidic devices. Rashed MZ; Green NG; Williams SJ Electrophoresis; 2020 Jan; 41(1-2):148-155. PubMed ID: 31677287 [TBL] [Abstract][Full Text] [Related]
19. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Church C; Zhu J; Xuan X Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386 [TBL] [Abstract][Full Text] [Related]
20. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]