These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 30762523)
21. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
22. Reservoir-based dielectrophoresis for microfluidic particle separation by charge. Patel S; Qian S; Xuan X Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644 [TBL] [Abstract][Full Text] [Related]
23. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization. Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725 [TBL] [Abstract][Full Text] [Related]
25. A continuous flow microfluidic device based on contactless dielectrophoresis for bioparticles enrichment. Rahmani A; Mohammadi A; Kalhor HR Electrophoresis; 2018 Feb; 39(3):445-455. PubMed ID: 28944476 [TBL] [Abstract][Full Text] [Related]
26. Quantitative analysis of the three-dimensional trap stiffness of a dielectrophoretic corral trap. Rahman MRU; Kwak TJ; Woehl JC; Chang WJ Electrophoresis; 2021 Mar; 42(5):644-655. PubMed ID: 33340119 [TBL] [Abstract][Full Text] [Related]
27. Multi-particle interaction in AC electric field driven by dielectrophoresis force. Huang Z; Wu Z; Wang P; Zhou T; Shi L; Liu Z; Huang J Electrophoresis; 2021 Nov; 42(21-22):2189-2196. PubMed ID: 34117650 [TBL] [Abstract][Full Text] [Related]
28. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
29. Particle trapping in high-conductivity media with electrothermally enhanced negative dielectrophoresis. Park S; Koklu M; Beskok A Anal Chem; 2009 Mar; 81(6):2303-10. PubMed ID: 19215119 [TBL] [Abstract][Full Text] [Related]
31. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes. Jen CP; Weng CH; Huang CT Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653 [TBL] [Abstract][Full Text] [Related]
33. Dielectrophoretic separation of bioparticles in microdevices: a review. Jubery TZ; Srivastava SK; Dutta P Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825 [TBL] [Abstract][Full Text] [Related]
34. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis. Li M; Li S; Li W; Wen W; Alici G Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345 [TBL] [Abstract][Full Text] [Related]
35. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape. Saucedo-Espinosa MA; Lapizco-Encinas BH Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065 [TBL] [Abstract][Full Text] [Related]
36. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Barrett LM; Skulan AJ; Singh AK; Cummings EB; Fiechtner GJ Anal Chem; 2005 Nov; 77(21):6798-804. PubMed ID: 16255576 [TBL] [Abstract][Full Text] [Related]
37. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads. Lewpiriyawong N; Xu G; Yang C Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585 [TBL] [Abstract][Full Text] [Related]
38. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement. Kim M; Jung T; Kim Y; Lee C; Woo K; Seol JH; Yang S Biosens Bioelectron; 2015 Dec; 74():1011-5. PubMed ID: 26264268 [TBL] [Abstract][Full Text] [Related]
39. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665 [TBL] [Abstract][Full Text] [Related]
40. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]