BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30762541)

  • 1. Generative Adversarial Networks for Facilitating Stain-Independent Supervised and Unsupervised Segmentation: A Study on Kidney Histology.
    Gadermayr M; Gupta L; Appel V; Boor P; Klinkhammer BM; Merhof D
    IEEE Trans Med Imaging; 2019 Oct; 38(10):2293-2302. PubMed ID: 30762541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification.
    Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V
    Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving unsupervised stain-to-stain translation using self-supervision and meta-learning.
    Bouteldja N; Klinkhammer BM; Schlaich T; Boor P; Merhof D
    J Pathol Inform; 2022; 13():100107. PubMed ID: 36268068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colour adaptive generative networks for stain normalisation of histopathology images.
    Cong C; Liu S; Di Ieva A; Pagnucco M; Berkovsky S; Song Y
    Med Image Anal; 2022 Nov; 82():102580. PubMed ID: 36113326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised X-ray image segmentation with task driven generative adversarial networks.
    Zhang Y; Miao S; Mansi T; Liao R
    Med Image Anal; 2020 May; 62():101664. PubMed ID: 32120268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-to-Image Translation for Simplified MRI Muscle Segmentation.
    Gadermayr M; Heckmann L; Li K; Bähr F; Müller M; Truhn D; Merhof D; Gess B
    Front Radiol; 2021; 1():664444. PubMed ID: 37492182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation.
    Cui H; Yuwen C; Jiang L; Xia Y; Zhang Y
    Comput Biol Med; 2021 Sep; 136():104726. PubMed ID: 34371318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stain-Independent Deep Learning-Based Analysis of Digital Kidney Histopathology.
    Bouteldja N; Hölscher DL; Klinkhammer BM; Buelow RD; Lotz J; Weiss N; Daniel C; Amann K; Boor P
    Am J Pathol; 2023 Jan; 193(1):73-83. PubMed ID: 36309103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain-specific data augmentation for segmenting MR images of fatty infiltrated human thighs with neural networks.
    Gadermayr M; Li K; Müller M; Truhn D; Krämer N; Merhof D; Gess B
    J Magn Reson Imaging; 2019 Jun; 49(6):1676-1683. PubMed ID: 30623506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised domain adaptation for the segmentation of breast tissue in mammography images.
    Ryan F; Román KL; Gerbolés BZ; Rebescher KM; Txurio MS; Ugarte RC; González MJG; Oliver IM
    Comput Methods Programs Biomed; 2021 Nov; 211():106368. PubMed ID: 34537490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised Learning for Cell-Level Visual Representation in Histopathology Images With Generative Adversarial Networks.
    Hu B; Tang Y; Chang EI; Fan Y; Lai M; Xu Y
    IEEE J Biomed Health Inform; 2019 May; 23(3):1316-1328. PubMed ID: 29994411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FUN-SIS: A Fully UNsupervised approach for Surgical Instrument Segmentation.
    Sestini L; Rosa B; De Momi E; Ferrigno G; Padoy N
    Med Image Anal; 2023 Apr; 85():102751. PubMed ID: 36716700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adversarial Stain Transfer for Histopathology Image Analysis.
    Bentaieb A; Hamarneh G
    IEEE Trans Med Imaging; 2018 Mar; 37(3):792-802. PubMed ID: 29533895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy.
    Berijanian M; Schaadt NS; Huang B; Lotz J; Feuerhake F; Merhof D
    J Pathol Inform; 2023; 14():100195. PubMed ID: 36844704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-supervised strategy for fully automatic segmentation of renal dynamic contrast-enhanced magnetic resonance images.
    Huang W; Li H; Wang R; Zhang X; Wang X; Zhang J
    Med Phys; 2019 Oct; 46(10):4417-4430. PubMed ID: 31306492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised domain adaptation for histopathology image segmentation with incomplete labels.
    Zhou H; Wang Y; Zhang B; Zhou C; Vonsky MS; Mitrofanova LB; Zou D; Li Q
    Comput Biol Med; 2024 Mar; 171():108226. PubMed ID: 38428096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disentangled representation and cross-modality image translation based unsupervised domain adaptation method for abdominal organ segmentation.
    Jiang K; Quan L; Gong T
    Int J Comput Assist Radiol Surg; 2022 Jun; 17(6):1101-1113. PubMed ID: 35301702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining generative modelling and semi-supervised domain adaptation for whole heart cardiovascular magnetic resonance angiography segmentation.
    Muffoletto M; Xu H; Kunze KP; Neji R; Botnar R; Prieto C; Rückert D; Young AA
    J Cardiovasc Magn Reson; 2023 Dec; 25(1):80. PubMed ID: 38124106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual cyclegan for robust domain transformation of histopathological tissue slides.
    de Bel T; Bokhorst JM; van der Laak J; Litjens G
    Med Image Anal; 2021 May; 70():102004. PubMed ID: 33647784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal subfields segmentation in brain MR images using generative adversarial networks.
    Shi Y; Cheng K; Liu Z
    Biomed Eng Online; 2019 Jan; 18(1):5. PubMed ID: 30665408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.