These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30762556)

  • 1. VR Exploration Assistance through Automatic Occlusion Removal.
    Wang L; Wu J; Yang X; Popescu V
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):2083-2092. PubMed ID: 30762556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifiable Fine-Grain Occlusion Removal Assistance for Efficient VR Exploration.
    Wu J; Wang L; Zhang H; Popescu V
    IEEE Trans Vis Comput Graph; 2022 Sep; 28(9):3154-3167. PubMed ID: 33476271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PreVR: Variable-Distance Previews for Higher-Order Disocclusion in VR.
    Liao S; Byrd V; Popescu V
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2454-2463. PubMed ID: 38437137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient VR and AR Navigation Through Multiperspective Occlusion Management.
    Wu ML; Popescu V
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3069-3080. PubMed ID: 29990065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collaborative VR-Based 3D Labeling of Live-Captured Scenes by Remote Users.
    Zingsheim D; Stotko P; Krumpen S; Weinmann M; Klein R
    IEEE Comput Graph Appl; 2021; 41(4):90-98. PubMed ID: 34014822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric calibration of head-mounted displays and its effects on distance estimation.
    Kellner F; Bolte B; Bruder G; Rautenberg U; Steinicke F; Lappe M; Koch R
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):589-96. PubMed ID: 22402686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the utility of VR for spatial understanding in surgical planning: evaluation of head-mounted to desktop display.
    Hattab G; Hatzipanayioti A; Klimova A; Pfeiffer M; Klausing P; Breucha M; Bechtolsheim FV; Helmert JR; Weitz J; Pannasch S; Speidel S
    Sci Rep; 2021 Jun; 11(1):13440. PubMed ID: 34188080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Evaluation of 3-D Scene Exploration Using a Multiperspective Image Framework.
    Rosen P; Popescu V
    Vis Comput; 2011 Jun; 27(6-8):623-632. PubMed ID: 22661796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Approach for Reducing Virtual Reality Sickness in Real Time: Design and Validation Study.
    Won J; Kim YS
    JMIR Serious Games; 2022 Sep; 10(3):e36397. PubMed ID: 36166294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural perspective projections for head-mounted displays.
    Steinicke F; Bruder G; Kuhl S; Willemsen P; Lappe M; Hinrichs KH
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):888-99. PubMed ID: 21546652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual reality body motion induced navigational controllers and their effects on simulator sickness and pathfinding.
    Aldaba CN; White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4175-4178. PubMed ID: 29060817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change Blindness Phenomena for Virtual Reality Display Systems.
    Steinicke F; Bruder G; Hinrichs K; Willemsen P
    IEEE Trans Vis Comput Graph; 2011 Sep; 17(9):1223-33. PubMed ID: 21301028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiperspective Focus+Context Visualization.
    Wu ML; Popescu V
    IEEE Trans Vis Comput Graph; 2016 May; 22(5):1555-67. PubMed ID: 27045911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY].
    Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T
    Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality.
    Anderson AP; Mayer MD; Fellows AM; Cowan DR; Hegel MT; Buckey JC
    Aerosp Med Hum Perform; 2017 Jun; 88(6):520-526. PubMed ID: 28539139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented Reality versus Virtual Reality for 3D Object Manipulation.
    Krichenbauer M; Yamamoto G; Taketom T; Sandor C; Kato H
    IEEE Trans Vis Comput Graph; 2018 Feb; 24(2):1038-1048. PubMed ID: 28129181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.