BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30763080)

  • 1. Ranking Reversible Covalent Drugs: From Free Energy Perturbation to Fragment Docking.
    Zhang H; Jiang W; Chatterjee P; Luo Y
    J Chem Inf Model; 2019 May; 59(5):2093-2102. PubMed ID: 30763080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Relative Binding Free Energy Predict Selectivity of Reversible Covalent Inhibitors?
    Chatterjee P; Botello-Smith WM; Zhang H; Qian L; Alsamarah A; Kent D; Lacroix JJ; Baudry M; Luo Y
    J Am Chem Soc; 2017 Dec; 139(49):17945-17952. PubMed ID: 29124934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations.
    Bonatto V; Shamim A; Rocho FDR; Leitão A; Luque FJ; Lameira J; Montanari CA
    J Chem Inf Model; 2021 Sep; 61(9):4733-4744. PubMed ID: 34460252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation.
    Yu W; Weber DJ; MacKerell AD
    J Chem Theory Comput; 2023 May; 19(10):3007-3021. PubMed ID: 37115781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity and Selectivity Assessment of Covalent Inhibitors by Free Energy Calculations.
    Mihalovits LM; Ferenczy GG; Keserű GM
    J Chem Inf Model; 2020 Dec; 60(12):6579-6594. PubMed ID: 33295760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the affinity of halogenated reversible covalent inhibitors through relative binding free energy.
    Lameira J; Bonatto V; Cianni L; Dos Reis Rocho F; Leitão A; Montanari CA
    Phys Chem Chem Phys; 2019 Nov; 21(44):24723-24730. PubMed ID: 31680132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the Binding and Conformational Energetics of a Targeted Covalent Inhibitor to Bruton's Tyrosine Kinase.
    Awoonor-Williams E; Rowley CN
    J Chem Inf Model; 2021 Oct; 61(10):5234-5242. PubMed ID: 34590480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Evaluation of Covalent Docking Tools.
    Scarpino A; Ferenczy GG; Keserű GM
    J Chem Inf Model; 2018 Jul; 58(7):1441-1458. PubMed ID: 29890081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome.
    Zhou J; Saha A; Huang Z; Warshel A
    J Am Chem Soc; 2022 May; 144(17):7568-7572. PubMed ID: 35436404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease.
    Awoonor-Williams E; Abu-Saleh AAA
    Phys Chem Chem Phys; 2021 Mar; 23(11):6746-6757. PubMed ID: 33711090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Mechanism of Covalent Inhibition: Simulating the Binding Free Energy of α-Ketoamide Inhibitors of the Main Protease of SARS-CoV-2.
    Mondal D; Warshel A
    Biochemistry; 2020 Dec; 59(48):4601-4608. PubMed ID: 33205654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and accurate estimation of protein-ligand relative binding affinities using site-identification by ligand competitive saturation.
    Goel H; Hazel A; Ustach VD; Jo S; Yu W; MacKerell AD
    Chem Sci; 2021 Jul; 12(25):8844-8858. PubMed ID: 34257885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the binding energetics of reversible covalent inhibitors of the SARS-CoV-2 main protease: an
    Awoonor-Williams E
    Phys Chem Chem Phys; 2022 Oct; 24(38):23391-23401. PubMed ID: 36128834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations?
    Hao D; He X; Ji B; Zhang S; Wang J
    J Chem Inf Model; 2020 Dec; 60(12):6624-6633. PubMed ID: 33213150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the impact of binding free energy and kinetics calculations in modern drug discovery.
    Adediwura VA; Koirala K; Do HN; Wang J; Miao Y
    Expert Opin Drug Discov; 2024 Jun; 19(6):671-682. PubMed ID: 38722032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.