These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30763086)

  • 1. Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model.
    Visscher KM; Geerke DP
    J Chem Theory Comput; 2019 Mar; 15(3):1875-1883. PubMed ID: 30763086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.
    Mohebifar M; Johnson ER; Rowley CN
    J Chem Theory Comput; 2017 Dec; 13(12):6146-6157. PubMed ID: 29149556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deriving a Polarizable Force Field for Biomolecular Building Blocks with Minimal Empirical Calibration.
    Visscher KM; Geerke DP
    J Phys Chem B; 2020 Mar; 124(9):1628-1636. PubMed ID: 32073849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.
    Curutchet C; Cupellini L; Kongsted J; Corni S; Frediani L; Steindal AH; Guido CA; Scalmani G; Mennucci B
    J Chem Theory Comput; 2018 Mar; 14(3):1671-1681. PubMed ID: 29439575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models.
    Davis JE; Rahaman O; Patel S
    Biophys J; 2009 Jan; 96(2):385-402. PubMed ID: 19167291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the London Dispersion Coefficients of Protein Force Fields Using the Exchange-Hole Dipole Moment Model.
    Walters ET; Mohebifar M; Johnson ER; Rowley CN
    J Phys Chem B; 2018 Jul; 122(26):6690-6701. PubMed ID: 29877703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-dependent model for many-body polarization, exchange, and dispersion interactions in hybrid quantum mechanical/molecular mechanical calculations.
    Giese TJ; York DM
    J Chem Phys; 2007 Nov; 127(19):194101. PubMed ID: 18035873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Polarizable Force Field for Molecular Dynamics Simulations of Lithium-Ion Battery Electrolytes: Sulfone-Based Solvents and Lithium Salts.
    Starovoytov ON
    J Phys Chem B; 2021 Oct; 125(40):11242-11255. PubMed ID: 34586817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Ion Polarizabilities and Their Correlation with van der Waals Radii: A Theoretical Investigation.
    Smith M; Khatiwada R; Li P
    J Chem Theory Comput; 2024 Oct; 20(19):8505-8516. PubMed ID: 39340455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Modeling of Water-in-Salt Electrolytes: A Comprehensive Analysis of Polarization Effects and Force Field Parameters in Molecular Dynamics Simulations.
    Rezaei M; Sakong S; Groß A
    J Chem Theory Comput; 2023 Sep; 19(17):5712-5730. PubMed ID: 37528639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules.
    Ren P; Wu C; Ponder JW
    J Chem Theory Comput; 2011 Oct; 7(10):3143-3161. PubMed ID: 22022236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.
    Huang J; Mei Y; König G; Simmonett AC; Pickard FC; Wu Q; Wang LP; MacKerell AD; Brooks BR; Shao Y
    J Chem Theory Comput; 2017 Feb; 13(2):679-695. PubMed ID: 28081366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate non-bonded potentials based on periodic quantum mechanics calculations for use in molecular simulations of materials and systems.
    Naserifar S; Oppenheim JJ; Yang H; Zhou T; Zybin S; Rizk M; Goddard WA
    J Chem Phys; 2019 Oct; 151(15):154111. PubMed ID: 31640352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic approach to calibrate a transferable polarizable force field parameter set for primary alcohols.
    Visscher KM; Vosmeer CR; Luirink RA; Geerke DP
    J Comput Chem; 2017 Mar; 38(8):508-517. PubMed ID: 28133840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A QM/MM Derived Polarizable Water Model for Molecular Simulation.
    Visscher KM; Swope WC; Geerke DP
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30501058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutually polarizable QM/MM model with in situ optimized localized basis functions.
    Dziedzic J; Head-Gordon T; Head-Gordon M; Skylaris CK
    J Chem Phys; 2019 Feb; 150(7):074103. PubMed ID: 30795653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Explicit Quantum Solvent with a Polarizable Continuum Model.
    Provorse Long MR; Isborn CM
    J Phys Chem B; 2017 Nov; 121(43):10105-10117. PubMed ID: 28992689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Parametrization of Biomolecular Force Fields from Quantum Mechanics/Molecular Mechanics (QM/MM) Simulations through Force Matching.
    Maurer P; Laio A; Hugosson HW; Colombo MC; Rothlisberger U
    J Chem Theory Comput; 2007 Mar; 3(2):628-39. PubMed ID: 26637041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferable, Polarizable Force Field for Ionic Liquids.
    Goloviznina K; Canongia Lopes JN; Costa Gomes M; Pádua AAH
    J Chem Theory Comput; 2019 Nov; 15(11):5858-5871. PubMed ID: 31525922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.