These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Smith JG; Gerszten RE Circulation; 2017 Apr; 135(17):1651-1664. PubMed ID: 28438806 [TBL] [Abstract][Full Text] [Related]
8. Integrated microscale analysis system for targeted liquid chromatography mass spectrometry proteomics on limited amounts of enriched cell populations. Martin JG; Rejtar T; Martin SA Anal Chem; 2013 Nov; 85(22):10680-5. PubMed ID: 24083476 [TBL] [Abstract][Full Text] [Related]
10. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics. Shen X; Hu Q; Li J; Wang J; Qu J J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676 [TBL] [Abstract][Full Text] [Related]
11. Mass spectrometry-based workflow for accurate quantification of Escherichia coli enzymes: how proteomics can play a key role in metabolic engineering. Trauchessec M; Jaquinod M; Bonvalot A; Brun V; Bruley C; Ropers D; de Jong H; Garin J; Bestel-Corre G; Ferro M Mol Cell Proteomics; 2014 Apr; 13(4):954-68. PubMed ID: 24482123 [TBL] [Abstract][Full Text] [Related]
12. Unified Workflow for the Rapid and In-Depth Characterization of Bacterial Proteomes. Abele M; Doll E; Bayer FP; Meng C; Lomp N; Neuhaus K; Scherer S; Kuster B; Ludwig C Mol Cell Proteomics; 2023 Aug; 22(8):100612. PubMed ID: 37391045 [TBL] [Abstract][Full Text] [Related]
13. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Searle BC; Pino LK; Egertson JD; Ting YS; Lawrence RT; MacLean BX; Villén J; MacCoss MJ Nat Commun; 2018 Dec; 9(1):5128. PubMed ID: 30510204 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of Multiple Reaction Monitoring (MRM) Assays for Clinical Applications. Kontostathi G; Makridakis M; Bitsika V; Tsolakos N; Vlahou A; Zoidakis J Methods Mol Biol; 2019; 1959():205-223. PubMed ID: 30852825 [TBL] [Abstract][Full Text] [Related]
15. Analyzing Cerebrospinal Fluid Proteomes to Characterize Central Nervous System Disorders: A Highly Automated Mass Spectrometry-Based Pipeline for Biomarker Discovery. Núñez Galindo A; Macron C; Cominetti O; Dayon L Methods Mol Biol; 2019; 1959():89-112. PubMed ID: 30852817 [TBL] [Abstract][Full Text] [Related]
16. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards. Percy AJ; Yang J; Chambers AG; Borchers CH Methods Mol Biol; 2016; 1410():1-21. PubMed ID: 26867735 [TBL] [Abstract][Full Text] [Related]
17. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Boja ES; Rodriguez H Proteomics; 2012 Apr; 12(8):1093-110. PubMed ID: 22577011 [TBL] [Abstract][Full Text] [Related]
18. Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline. Keller A; Shteynberg D Methods Mol Biol; 2011; 694():169-89. PubMed ID: 21082435 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics. Liu K; Zhang J; Fu B; Xie H; Wang Y; Qian X Proteomics; 2014 Jul; 14(13-14):1593-603. PubMed ID: 24827140 [TBL] [Abstract][Full Text] [Related]