These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30763349)

  • 1. Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data.
    Biasiolli L; Hann E; Lukaschuk E; Carapella V; Paiva JM; Aung N; Rayner JJ; Werys K; Fung K; Puchta H; Sanghvi MM; Moon NO; Thomson RJ; Thomas KE; Robson MD; Grau V; Petersen SE; Neubauer S; Piechnik SK
    PLoS One; 2019; 14(2):e0212272. PubMed ID: 30763349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated multiclass segmentation, quantification, and visualization of the diseased aorta on hybrid PET/CT-SEQUOIA.
    van Praagh GD; Nienhuis PH; Reijrink M; Davidse MEJ; Duff LM; Spottiswoode BS; Mulder DJ; Prakken NHJ; Scarsbrook AF; Morgan AW; Tsoumpas C; Wolterink JM; Mouridsen KB; Borra RJH; Sinha B; Slart RHJA
    Med Phys; 2024 Jun; 51(6):4297-4310. PubMed ID: 38323867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated quantification and evaluation of motion artifact on coronary CT angiography images.
    Ma H; Gros E; Baginski SG; Laste ZR; Kulkarni NM; Okerlund D; Schmidt TG
    Med Phys; 2018 Dec; 45(12):5494-5508. PubMed ID: 30339290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study.
    Robinson R; Valindria VV; Bai W; Oktay O; Kainz B; Suzuki H; Sanghvi MM; Aung N; Paiva JM; Zemrak F; Fung K; Lukaschuk E; Lee AM; Carapella V; Kim YJ; Piechnik SK; Neubauer S; Petersen SE; Page C; Matthews PM; Rueckert D; Glocker B
    J Cardiovasc Magn Reson; 2019 Mar; 21(1):18. PubMed ID: 30866968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.
    Codari M; Scarabello M; Secchi F; Sforza C; Baselli G; Sardanelli F
    Magn Reson Imaging; 2018 Apr; 47():77-82. PubMed ID: 29180100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality control of cardiac magnetic resonance imaging segmentation, feature tracking, aortic flow, and native T1 analysis using automated batch processing in the UK Biobank study.
    Chadalavada S; Rauseo E; Salih A; Naderi H; Khanji M; Vargas JD; Lee AM; Amir-Kalili A; Lockhart L; Graham B; Chirvasa M; Fung K; Paiva J; Sanghvi MM; Slabaugh GG; Jensen MT; Aung N; Petersen SE
    Eur Heart J Imaging Methods Pract; 2024 Jul; 2(3):qyae094. PubMed ID: 39385845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.
    Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.
    Gao S; van 't Klooster R; Brandts A; Roes SD; Alizadeh Dehnavi R; de Roos A; Westenberg JJ; van der Geest RJ
    J Magn Reson Imaging; 2017 Jan; 45(1):215-228. PubMed ID: 27251901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs.
    Chen Y; Dhar R; Heitsch L; Ford A; Fernandez-Cadenas I; Carrera C; Montaner J; Lin W; Shen D; An H; Lee JM
    Neuroimage Clin; 2016; 12():673-680. PubMed ID: 27761398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: validation and application in a large population based study.
    Goel A; McColl R; King KS; Whittemore A; Peshock RM
    J Magn Reson Imaging; 2014 Jul; 40(1):221-8. PubMed ID: 24115597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts.
    Sedghi Gamechi Z; Arias-Lorza AM; Saghir Z; Bos D; de Bruijne M
    Med Phys; 2021 Dec; 48(12):7837-7849. PubMed ID: 34653274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Automated, Quality-Controlled Cardiac Analysis From CMR: Validation and Large-Scale Application to Characterize Cardiac Function.
    Ruijsink B; Puyol-Antón E; Oksuz I; Sinclair M; Bai W; Schnabel JA; Razavi R; King AP
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):684-695. PubMed ID: 31326477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning algorithm for creating isotropic 3D aortic segmentations from routine cardiac MR localizers.
    Jiang Y; Punjabi K; Pierce I; Knight D; Yao T; Steeden J; Hughes AD; Muthurangu V; Davies R
    Magn Reson Imaging; 2025 Jan; 115():110253. PubMed ID: 39401602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation.
    Attar R; Pereañez M; Gooya A; Albà X; Zhang L; de Vila MH; Lee AM; Aung N; Lukaschuk E; Sanghvi MM; Fung K; Paiva JM; Piechnik SK; Neubauer S; Petersen SE; Frangi AF
    Med Image Anal; 2019 Aug; 56():26-42. PubMed ID: 31154149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated segmentation and quantification of the healthy and diseased aorta in CT angiographies using a dedicated deep learning approach.
    Sieren MM; Widmann C; Weiss N; Moltz JH; Link F; Wegner F; Stahlberg E; Horn M; Oecherting TH; Goltz JP; Barkhausen J; Frydrychowicz A
    Eur Radiol; 2022 Jan; 32(1):690-701. PubMed ID: 34170365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive assessment of aortic compliance and brachial endothelial function using 3.0-T high-resolution MRI: a feasibility study.
    Shan Y; Lin J; Xu P; Zhou J; Zeng M
    J Comput Assist Tomogr; 2012; 36(4):437-42. PubMed ID: 22805674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Quality-Controlled Cardiovascular Magnetic Resonance Pericardial Fat Quantification Using a Convolutional Neural Network in the UK Biobank.
    Bard A; Raisi-Estabragh Z; Ardissino M; Lee AM; Pugliese F; Dey D; Sarkar S; Munroe PB; Neubauer S; Harvey NC; Petersen SE
    Front Cardiovasc Med; 2021; 8():677574. PubMed ID: 34307493
    [No Abstract]   [Full Text] [Related]  

  • 20. Automated quality control for segmentation of myocardial perfusion SPECT.
    Xu Y; Kavanagh P; Fish M; Gerlach J; Ramesh A; Lemley M; Hayes S; Berman DS; Germano G; Slomka PJ
    J Nucl Med; 2009 Sep; 50(9):1418-26. PubMed ID: 19690019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.