These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 30763589)
1. miR-1933-3p is upregulated in skeletal muscles of MuSK+ EAMG mice and affects Impa1 and Mrpl27. Bogatikov E; Lindblad I; Punga T; Punga AR Neurosci Res; 2020 Feb; 151():46-52. PubMed ID: 30763589 [TBL] [Abstract][Full Text] [Related]
2. Muscle-specific regulation of the mTOR signaling pathway in MuSK antibody seropositive (MuSK+) experimental autoimmune Myasthenia gravis (EAMG). Chauhan M; Punga T; Punga AR Neurosci Res; 2013; 77(1-2):102-9. PubMed ID: 23933211 [TBL] [Abstract][Full Text] [Related]
3. Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice. Punga AR; Lin S; Oliveri F; Meinen S; Rüegg MA Exp Neurol; 2011 Aug; 230(2):207-17. PubMed ID: 21565192 [TBL] [Abstract][Full Text] [Related]
4. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK. Küçükerden M; Huda R; Tüzün E; Yılmaz A; Skriapa L; Trakas N; Strait RT; Finkelman FD; Kabadayı S; Zisimopoulou P; Tzartos S; Christadoss P J Neuroimmunol; 2016 Jun; 295-296():84-92. PubMed ID: 27235354 [TBL] [Abstract][Full Text] [Related]
5. MuSK antibody positive myasthenia gravis plasma modifies MURF-1 expression in C2C12 cultures and mouse muscle in vivo. Benveniste O; Jacobson L; Farrugia ME; Clover L; Vincent A J Neuroimmunol; 2005 Dec; 170(1-2):41-8. PubMed ID: 16213598 [TBL] [Abstract][Full Text] [Related]
6. Neurophysiological characteristics of MuSK antibody positive myasthenia gravis mice: focal denervation and hypersensitivity to acetylcholinesterase inhibitors. Chroni E; Punga AR J Neurol Sci; 2012 May; 316(1-2):150-7. PubMed ID: 22251934 [TBL] [Abstract][Full Text] [Related]
7. Estrogen Receptor, Inflammatory, and FOXO Transcription Factors Regulate Expression of Myasthenia Gravis-Associated Circulating microRNAs. Fiorillo AA; Heier CR; Huang YF; Tully CB; Punga T; Punga AR Front Immunol; 2020; 11():151. PubMed ID: 32153563 [TBL] [Abstract][Full Text] [Related]
8. Identification of novel MicroRNA signatures linked to experimental autoimmune myasthenia gravis pathogenesis: down-regulated miR-145 promotes pathogenetic Th17 cell response. Wang J; Zheng S; Xin N; Dou C; Fu L; Zhang X; Chen J; Zhang Y; Geng D; Xiao C; Cui G; Shen X; Lu Y; Wang J; Dong R; Qiao Y; Zhang Y J Neuroimmune Pharmacol; 2013 Dec; 8(5):1287-302. PubMed ID: 24043548 [TBL] [Abstract][Full Text] [Related]
9. Decreased bone mineral density in experimental myasthenia gravis in C57BL/6 mice. Oshima M; Iida-Klein A; Maruta T; Deitiker PR; Atassi MZ Autoimmunity; 2017 Sep; 50(6):346-353. PubMed ID: 28850269 [TBL] [Abstract][Full Text] [Related]
10. Differential Expression of miRNA in the Peripheral Blood Mononuclear Cells in Myasthenia Gravis with Muscle-Specific Receptor Tyrosine Kinase Antibodies. Tan Y; Zhu L; Cui L; Guan Y Crit Rev Eukaryot Gene Expr; 2021; 31(2):1-15. PubMed ID: 34347975 [TBL] [Abstract][Full Text] [Related]
11. Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. Punga T; Bartoccioni E; Lewandowska M; Damato V; Evoli A; Punga AR J Neuroimmunol; 2016 Mar; 292():21-6. PubMed ID: 26943954 [TBL] [Abstract][Full Text] [Related]
12. Effects of Teriflunomide on B Cell Subsets in MuSK-Induced Experimental Autoimmune Myasthenia Gravis and Multiple Sclerosis. Yilmaz V; Ulusoy C; Hajtovic S; Turkoglu R; Kurtuncu M; Tzartos J; Lazaridis K; Tuzun E Immunol Invest; 2021 Aug; 50(6):671-684. PubMed ID: 32597289 [TBL] [Abstract][Full Text] [Related]
13. Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis. Huijbers MG; Plomp JJ; van Es IE; Fillié-Grijpma YE; Kamar-Al Majidi S; Ulrichts P; de Haard H; Hofman E; van der Maarel SM; Verschuuren JJ Exp Neurol; 2019 Jul; 317():133-143. PubMed ID: 30851266 [TBL] [Abstract][Full Text] [Related]
14. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Sabre L; Punga T; Punga AR Front Immunol; 2020; 11():213. PubMed ID: 32194544 [TBL] [Abstract][Full Text] [Related]
15. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Mori S; Kubo S; Akiyoshi T; Yamada S; Miyazaki T; Hotta H; Desaki J; Kishi M; Konishi T; Nishino Y; Miyazawa A; Maruyama N; Shigemoto K Am J Pathol; 2012 Feb; 180(2):798-810. PubMed ID: 22142810 [TBL] [Abstract][Full Text] [Related]
16. miR-23b-3p acts as a counter-response against skeletal muscle atrophy. Okamura T; Hashimoto Y; Osaka T; Senmaru T; Fukuda T; Hamaguchi M; Fukui M J Endocrinol; 2020 Mar; 244(3):535-547. PubMed ID: 31958315 [TBL] [Abstract][Full Text] [Related]
17. MuSK EAMG: Immunological Characterization and Suppression by Induction of Oral Tolerance. Reuveni D; Aricha R; Souroujon MC; Fuchs S Front Immunol; 2020; 11():403. PubMed ID: 32256489 [TBL] [Abstract][Full Text] [Related]
18. BMSCs-Derived Extracellular VesiclemiR-29a-3p Improved the Stability of Rat Myasthenia Gravis by Regulating Treg/Th17 Cells. Tang Z; Chen M; Chen C; Fan C; Huang J Immunol Invest; 2024 Nov; 53(8):1422-1438. PubMed ID: 39291784 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA regulatory networks associated with abnormal muscle repair in survivors of critical illness. Walsh CJ; Escudero King C; Gupta M; Plant PJ; Herridge MJ; Mathur S; Hu P; Correa J; Ahmed S; Bigot A; Dos Santos CC; Batt J; J Cachexia Sarcopenia Muscle; 2022 Apr; 13(2):1262-1276. PubMed ID: 35092190 [TBL] [Abstract][Full Text] [Related]
20. Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth Through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway. Wang Y; Ma J; Qiu W; Zhang J; Feng S; Zhou X; Wang X; Jin L; Long K; Liu L; Xiao W; Tang Q; Zhu L; Jiang Y; Li X; Li M Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30235878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]